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Abstract 

 

 The Maritime province of Nova Scotia has seen coastal flooding become a more 
frequent phenomenon during the past decades due to the changing climate regime. This has 
influenced the interest provincial and federal governments have on flood risk modelling, who 
often incorporate Geographic Information Systems (GIS) as useful tools in their analysis. 
Incorporating LiDAR-derived digital elevation models (DEMs) in their workflows is the next step 
in hydrological analysis, as LiDAR offers a unique pathway for the analysis of flood risk without 
the need to rely on biotic or hydrological data. This study aims to follow this theme in order to 
model the effects of inland flooding in the low relief landscape of the Mersey River, located in 
Queen’s County, Nova Scotia, and its effects on the infrastructure built along the river network. 
The analysis included multi-criteria evaluation (MCE) methods coupled with a stochastic 
simulation approach in order to determine areas where vulnerability is the most certain. Five 
criteria are derived and included in this analysis, them being Height Above Nearest Drainage 
(HAND), Landscape Slope, Land Use/Cover, Proximity to Hydroelectric Dams, and Downstream 
Distance to the River. The overall results derived from the MCE and sensitivity analysis 
workflows indicate that high flood risk is present in urbanized areas along the Mersey River 
embankment at high confidence intervals, while the Mersey River floodplain appears to flow 
laterally towards surrounding wetland areas and into drainage basins. The accuracy provided 
by LiDAR-derived DEMs supported a high-quality workflow for the MCE and uncertainty 
analysis, proving their utility for floodplain delineation. The addition of historical and 
hydrological data to future projects could build on the results presented in this study, adding 
more to the literature on flood risk modelling along the Mersey River.  

 
Keywords: Flood risk, LiDAR, multi-criteria evaluation, hydroelectric dams, stochastic 

simulation, Monte-Carlo method.  
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1. Introduction and Context 

1.1 Field of Work 

 

Floods represent one of the costliest environmental hazards to coastal communities, 
threatening infrastructure and human capital alike in case of a flooding event (Jha, Bloch, & 
Lamond, 2012, p. 21). The cited study indicates these are issues that are accentuated in an 
urban setting when contrasted to rural land, as population density peaks in cities where 
property and assets have a higher economic cost and use (Jha, Bloch, & Lamond, 2012, pp. 21-
22). Furthermore, the changing climate regime is expected to increase flood intensity in the 
following decades, making this an extremely important study area in the near future (World 
Meteorological Organization & Global Water Partnership, 2009, p. 5).  

Flood risk modelling has gained traction in the last decade as a key tool for predicting 
flood inundation zones and providing reliable information on risk associated with flooding 
events. Governments and some private institutions often use Geographic Information Systems 
(GIS) for this purpose, where aided by computer-generated models they can improve damage 
estimation in case of a natural disaster. LiDAR-derived data can be quite useful for this purpose, 
as high-resolution digital elevation models (DEMs) allow for the creation of more accurate 
floodplains, predicting flood risk to a powerful degree of certainty (Haile & Rientjesb, 2005). 

Here the integration of GIS with use of multi-criteria evaluation (MCE) comes into play. 
By using these techniques, GIS specialists are able to evaluate complex spatial problems where 
more than one variable is involved (Carver, 1991). Although MCEs are more commonly used for 
creating suitability maps (Eastman, 1999), there is extensive evidence in the literature showing 
their importance in flood risk modelling (Hazarika et al, 2018, Khan et al, 2018, and Rahmati et 
al, 2018). 

There are, however, legitimate concerns regarding MCEs. The fluctuations in real 
elevation values, known as the root-mean-square-error (RMSE) can lead to results being very 
different from the truth, therefore increasing uncertainty in the analysis. In order to assess this, 
a probabilistic approach can be taken, using stochastic (Monte-Carlo) simulation to run a 
predetermined number of iterations of the MCE workflow, subjecting its criteria to the 
fluctuations expressed in the RMSE. Stochastic processes are sometimes used in flood risk 
modelling and MCE independently (Celik, Gul, Yucesan, & Mete, 2019), but there is a void in 
literature which discusses their application to both topics combined. 

1.2 Research Purpose 

 

This study intends to create a flood risk model for the area surrounding the Mersey 
river, in Queens County, Nova Scotia, using MCE methodology. A stochastic simulation is then 
performed in order to analyze the sensitivity of the MCE output to RMSE in the DEM, 
differentiating at-risk areas with varying degrees of uncertainty.  
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2. Research Objectives 

 

Our research purpose will be met by meeting the following research objectives: 
1) Determine criteria and constraints associated with inland flooding in Nova Scotia. 
2) Assign criteria weights using a pairwise comparison matrix, based on reviewed 

literature. 
3) Develop a flood risk model using MCE output.  
4) Perform a stochastic simulation at varying degrees of uncertainty to verify the 

legitimacy of the MCE findings. 
5) Conjoin the MCE and stochastic maps to assess flood risk in the study site. 

3. Study Area 

 
The base location of this study is located in the southwestern corner of Nova Scotia. The 

chosen strip of the Mersey river extends for 17 kilometers and borders two major Urban 
townships, Milton, and Liverpool, while touching on the periphery of another, Bristol, as seen 
in figure 1. The combined population of these three towns is around 3,500 residents (Peterson, 
2015). Along this low relief strip of river also are roadways containing peri-urban development 
along with automotive and railway bridges stretching over the river and spillways. The Mersey 
river contains Nova Scotia’s largest and second most productive hydroelectric network, 
consisting of 6 generating stations, 33 dams, 17 spillways and 3 canals. This hydroelectric 
system is a critical part of Nova Scotia's electricity network, ensuring power supply for a large 
part of the southern counties. This was one additional reason for selecting the river, as damage 

Figure 1 - The study site encompasses a subsection of the Mersey River, located in proximity to 
Liverpool, Queens County, along the southern coast of Nova Scotia. A DEM of the study area is 
overlaid to show the local topography. 
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to the hydro infrastructure could put the energy security of the surrounding cities at risk in case 
of a flooding event. Furthermore, deforestation in the study site is not an uncommon feature, 
exemplified by several “bare land” patches in proximity to the riverbank. These patches are 
susceptible to having lower infiltration rates than forested land, thus increasing the frequency 
and intensity of potential floods (Regüés et al., 2017).  

4. Methods and Materials  

4.1 Data Needs 

  LiDAR datasets help provide a high-resolution representation of elevation data, 
something which is particularly important when modelling complex topography, according to 
Haile et. al (2005). The cited report indicates that this characteristic of LiDAR datasets makes 
them an invaluable tool for modelling drainage networks, representing land-use and 
infrastructure in 3D view and mapping floodplain extent (Haile et. al 2005). Six DEM raster tiles 
at a ~ 1-meter resolution were used in this study, all derived from LiDAR data gathered by a 
third-party geomatics company. Another required layer, land use, was obtained through 
Agriculture and Agri-Food Canada, who in 2010 created the Canada-wide land use dataset at a 
30-meter resolution using classified satellite imagery. The last data component used in the 
study was a vector polygon which represented the extent of the Mersey River from the Port of 
Liverpool all the way up to Sandy Bottom Lake.  

4.2 Data Cleaning and Pre-processing Methods 

Each of the layers described above was reprojected to the corresponding coordinate 
system of NAD_1983_UTM_Zone_20N, which was used by every layer created onwards in our 
report. The six DEM tiles were mosaicked and then hydrologically conditioned using breaching 
to ensure flow across depressions. This breached DEM served as an input in the creation of the 
slope, HAND, and distance from river criteria. 

4.3 Criteria Selection and Creation  

The criteria included in the MCE workflow were influenced by the methodology used in 
Hazarika et al (2018), Khan et al (2018), and Rahmati et al (2018), which overall chose 
parameters that had a higher degree of influence in river floods. The addition of the proximity 
to dams criterion was made based on the unique characteristics of our study site when 
compared to other studies (see section 1); three dams affect water flow along the Mersey River, 
making it an important criterion to include in the analysis. Figure 2 shows a visual 
representation of these criteria. 
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Slope – Slope affects the velocity at which water travels through a drainage channel. 

The lower the slope, the flatter the terrain, and the more likely it is for water to flow through 
the determined location (Kandilioti & Makropoulos, 2011, p. 447). By contrast, steeper 
ascending paths will limit the extent of the floodplain, effectively reducing the impacts of the 
flooding event (Mohamed Elmoustafa, 2012, p. 328). 

  
Proximity to rivers – Flooding is more common in areas closer to rivers. Therefore, the 

closer a certain location is to the river, the higher at risk it is (Rincón, Khan, & Armenakis, 2018). 
The rasterized river extent was used to generate a downslope distance to stream (DDTS) raster, 
which represents the distance from all cells in the raster to the closest point of the stream 
measured along the downslope flowpath of the water. 

 
HAND – Height above nearest drainage (HAND) represents the difference in elevation 

between a location and its nearest stream cell. The higher the value associated with the HAND 

Figure 2 - The visual representation of the criteria to be used in the MCE analysis. Represented 
as a) land use layer, b) height above nearest drainage, c) proximity to dams, d) slope, and e) 
proximity to rivers. 
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criterion, the lower the risk of flooding will be for a certain location (Souza Santos, Koenow 
Pinheiro, & Gallo Junior, 2021).  

 
Proximity to dams – Dams help regulate water flow and are also a source of hydro-

power for the people of Bristol, Liverpool, and Milton. In case of a flooding event, there is risk 
of dam failure which, depending on the water volume stored by the dam, will determine the 
degree of risk that dam poses to the neighboring lands (CVCOG, 2012). Dams in the Mersey 
River were digitized and rasterized and used to derive a Euclidean distance raster from their 

location to the rest of the cells in the study site. 
 
Land use – Due to the impervious nature of asphalt, urban areas tend to carry more 

water as overland flow during a flooding event. Permeable soils, such as forested areas and 
bare land, on the other hand, have a way higher infiltration rate than asphalt, leading to a 
significant percentage of water being lost to infiltration in case of a rainfall or flooding event 
(Markovič, Zeleňáková, Káposztásová, & Hudáková, 2014). This raster was resampled to match 
the resolution of the other layers.  

4.4 Multi-Criteria Evaluation (MCE) 

Two key steps were performed prior to running the MCE for this study. 
 

Rescaling of criteria factors – This step consisted of rescaling all criteria to the same scale, which 
was determined to be from 0 to 100. Values approaching 100 would be considered higher risk 
while values approaching 0 would be considered lower risk. All criteria were rescaled using a 
linear stretch, as shown in equation 1. 

Where: 

Value Criteria 

OUTVAL Value of pixel in output map 

INVAL Value of pixel in input map 

INLO Lower value of 'stretch from' range 

INUP Upper value of 'stretch from' range 

OUTLO Lower value of 'stretch to' range 

OUTUP Upper value of 'stretch to' range 

Equation 1 
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Determination of criteria weights – Weighting of the rescaled criteria was accomplished using 
a pairwise matrix, as shown in table 1. Rankings in the matrix were determined based on the 
literature.  

 
Table 1 - MCE Table indicating the distribution of weights amongst our analysis constraints 
given by each researcher and applied to the flood delineation. 
 

Our Criteria Almuina Pica, 
D. Weighting 

Nieto, A. 
Weighting 

Stange, T.: 
Weighting 

Final Ranking 

HAND 0.231 0.120 0.320 0.221 

LANDUSE/COVER 0.408 0.162 0.250 0.270 

PROXIMITY TO 
DAMS 

0.125 0.150 0.080 0.118 

SLOPE 0.184 0.282 0.220 0.226 

PROXIMITY TO 
RIVERS 

0.252 0.122 0.130 0.165 

TOTAL    1.0 

 
After weights were determined, they were combined with the criteria to perform the MCE in a 
similar manner to that shown in equation 2.  

     
Where:  

 

Code Criteria 

C Criteria 

W Weight 

n Upper limit 

i Lower limit 

4.5 Stochastic Simulation (Monte Carlo Method) 

Stochastic simulations are useful for estimating probability distributions of an output 
when one or more inputs are allowed to vary randomly (Patidar, Haynes, Li, & Haynes, 2017; 

Equation 2 
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Graham & Talay 2015). The RMSE of the DEM (6.6 cm) was taken as reference to apply this 
variation to the input DEM. The simulation workflow demonstrated in figure 3 was run for 50 
iterations over a 14-hour period. 



10 
 

Figure 3 - Flowchart illustrating the steps and processes used to create the stochastic layers using a series of for loops. 
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5. Results  

5.1 MCE Flood Risk Map 

 

Flood risk calculated over the floodplain extent is shown in figure 4, the output of the MCE 
calculations shows areas of high risk in contrast to moderate risk using a color gradient. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - Map a) displays the output of our MCE risk calculated over the floodplain extent, 
darker hues indicating higher risk while lighter colors indicate areas of lower risk. Map b) shows 
the flood delineation with respect to urban landmarks in the county. 
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5.2 Stochastic Sensitivity Maps 

 
Figure 5 below shows how sensitive the MCE output was to variation in the original DEM due 
to the RMSE. The models below were generated by the stochastic simulation across three 
uncertainty levels. 

 

Figure 5 - Final output from the stochastic simulation indicating the levels of uncertainty in 
terms of confidence that a flood will reach and affect the surrounding Queen’s County 
landscape. a) illustrates the lowest uncertainty threshold, which equals 15%, b) illustrates our 
moderate threshold value, which equals 25%, c) shows the maximum/highest uncertainty 
threshold, which equals 40%, which covers most of the HAND extent. 
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6. Discussion 

6.1 Generation of the MCE Map 

6.1.1 MCE Weights and LiDAR Discussion 

 
 Criteria values used in the MCE presented in table 1 emphasize land use as the 

heaviest weighed, as urban infrastructure is heavily impacted by flooding. These include 
roadways, urban centers and rural areas that hug the bank of the Mersey River. Slope played a 
crucial role in the containment of flooding, as demonstrated when reaching the outer edges of 
the HAND extent (~0.4 – 0.7 km perpendicular to the river direction). At this distance, it is seen 
that the relief of the landscape halts the lateral progression of floodwaters. A key component 
of this study revolved around simulating the effects flooding has on low relief landscapes and 
comparing them with similar literature on high-relief landscapes, specifically M. Besharat et. al 
(2016) and C.D Rennó et.al (2011), their results indicate that the high relief floodplain does not 
extend nearly as much as one in low relief areas. However, the volume of floodwater 
accumulated in the former would be greater, potentially causing more water damage to 
essential structures, such as power lines and housing zones. This analysis would require a 
greater emphasis to be put on hydrological and bathymetric data, something which was absent 
for our study.  

6.1.2 Mersey River MCE Analysis 

 
             Results presented in the figure 4 maps a) and b) show significantly high flood risk 

mainly in the urban sprawl in Liverpool, Bristol, and Milton, with Liverpool being the area of 
highest vulnerability among the three. This is due to Liverpool being the lowest elevation town 
in the study site, sitting at ~22 – 31 m above sea level. A high-risk cluster occurs as the flood 
path continues south away from Liverpool along NS Highway 3, then flowing into the wetlands 
and marshlands that make up the Meadow, Round, Neck and Bar Ponds. This will most likely 
be a point of flooding as well, which will flow laterally into the surrounding wetland and could 
potentially overflow onto the highway.  

 

 The urban extent of the Bristol harbour also shows areas of 80 - 100 % risk. The 
vast majority of these were identified to be the locations for parking lots and yards, identified 
mostly as the locations for parking lots and yards. Flooding extent can be accentuated by 
overland flow passing over impermeable surfaces, as the distance traveled by water is 
proportional to the respective surface roughness coefficient of land under it (Arcement et. al, 
1989). This variable is dependent on the channel width, length, and induced drag on the fluid 
across the medium (see section 4.3.2). The reverse also occurs in vegetated areas, where water 
passing over the surface is lost to infiltration. Areas away from urbanized land can still have 
values greater than 40% risk, as flooding can occur all the way to the edge of the floodplain but 
will be stopped by the upslope portion of the landscape relief. Milton shows an 80 - 100% risk 
value due to its proximity to two dams upstream from it. Milton is also at a narrow point in the 
river, bottlenecking the accumulation of floodwater, which eventually could spill out becoming 
overland flow.  
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6.2 Analysis of Floodplain Sensitivity Maps 

6.2.1 Low threshold uncertainty 

 

Low threshold map Figure 5 a) (threshold = 15%) indicates a low uncertainty region of 
the urban landscapes along the Mersey River embankment, indicating that at the highest 
possible confidence level we are assured that Liverpool, Milton, and the Bristol harbor areas 
will be the most at risk, coinciding with the initial analysis of the MCE based floodplain map in 
figure 4. Outside of these urban areas along the riverbank, model uncertainty increases to 50% 
when distancing from urban areas and the river, and changing abruptly to 100% uncertainty 
shortly after.  

6.2.2 Moderate threshold uncertainty 

 

The moderate threshold in Figure 5 b) for a 25% threshold shows a delineation output 
that is nearly identical to the flood map in figure 4. Low uncertainty areas with values of 0-25% 
reach down into the southern highway 3 networks, including the multi basin/pond network 
along the wetlands. With the exception of the elevated roads and bridge networks north and 
within south Liverpool which indicate areas of 50% uncertainty, a considerable amount if not 
all of the urban scape is at 0% uncertainty of flood risk occurring in these areas. Regions of 
higher uncertainty ~50% coincide with areas of 75-80% flood risk in the MCE, reinforcing the 
risk assessment made using the determined criteria.  

6.2.3 Higher threshold uncertainty 

 

Highest threshold output in Figure 5 c) (threshold = 40%) shows the full extent of the 
certainty that potential flood risk will occur. Areas in the MCE map (figure 4) with risk values 
less than 50% are grouped and counted as non-flooding areas or areas with 100% uncertainty 
indicating that at the highest threshold level we can assume these areas to be the least 
impacted in terms of lateral movement in fluid flow. Now, this is not to say that the water 
accumulation from flooding in areas closer to the river will not affect and impact these low-risk 
areas, but in terms of mitigation, this confidence level shows that prioritization for prevention 
should be less focused in this region. The high threshold map also indicates that risk values of 
70 - 100 % all appear to be within the 0 - 25% uncertainty range, further reinforcing the validity 
of the MCE which counted these regions as high risk. The results of the stochastic simulation 
therefore proved it to be a helpful tool to ensure the validity of the initial MCE analysis, properly 
modelling areas at risk where flood mitigation measures could and should be implemented. 

6.3 Future Work 

  

The floodplain delineation analysis presented in this study only shows one of many 
existing methods for assessing flood risk. An all-encompassing model of the Mersey river 
floodplain would require additional historical and hydrological data for the river, information 
on soil type and biotic data of the neighboring lands, and industry data describing the logging 
and fishing operations present through the entirety of the study site (see figure 1). Additionally, 
information about bank height and surface roughness would aid in the estimation of flood 
timing.  
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7. Conclusion 

 

Urban areas surrounding the Mersey River in Nova Scotia are expected to be at a higher 
risk of flooding events than any other land type in the region. The importance of land use for 
determining flood delineation patterns lies in that impervious areas receive higher levels of 
overland flow and less infiltration during a flooding event. On top of this, urban areas have 
higher economic value than other land types, as well as a higher population density, further 
accentuating the associated risks coming from floods. This conclusion was supported and 
reinforced by the MCE model and the stochastic simulation analysis. Operating these two 
methods in conjunction allowed for this study to expand on the limited literature on the topic 
while also pioneering on their application to flood risk modelling. The results gathered put the 
cities of Liverpool, Bristol, and Milton at a high risk, making them the best targets for the 
development of risk mitigation programs. It is intended that the combination of MCE and 
stochastic processes used in this study could serve as reference for flood risk work performed 
in different locations, as assessing uncertainty in the source data is of key importance for 
conducting a robust analysis.  
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