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Abstract   
  Currently, there is a gap in our understanding of how to quantify hydrologically active 

areas (HAAs) and how they relate to nutrient loadings at the watershed scale (Ali et al., 2017; 

Sen et al., 2008). This study provides a simple modelling approach quantifying the potential for 

saturation-excess (SOF) and infiltration-excess overland flow (IOF), and assesses their 

relationships with phosphorus concentrations in the Grand River watershed. The potential for 

HAAs was quantified using three criteria for each runoff generation mechanisms (RGM) in a 

multi-criteria evaluation (MCE). The criteria included: a normalized difference vegetation index 

(NDVI) computed using multiple 30 m resolution LANDSAT 8 images captured in 2015; land use 

data compiled using a 15 m resolution raster retrieved from the SOLRIS (2015) dataset; 

hydrological soil group vector dataset with 1:10,000 scale, retrieved from the Soil Survey 

Complex dataset compiled by the Ontario government; and a topographic wetness index 

computed using a 1 m resolution digital terrain model, retrieved from the Government of 

Canada’s High-Resolution Digital Elevation Model (HRDEM). A normalized RGM index score was 

calculated for each sub-watershed in the study area for each RGM. These scores were 

compared with monitored phosphorus concentrations using a linear regression to evaluate 

potential relationships. Results from the regression indicated that IOF had an R2 = 0.312, while 

SOF had an R2 = 0.087, highlighting a stronger correlation between IOF and nutrient 

concentrations than SOF. The results provide a basis for new approaches to restoration 

techniques, whereby targeting areas more conducive to IOF may yield more effective results in 

controlling the transport of phosphorus from land surface to stream. Ideally, this will be used in 

conjunction with known high nutrient loading zones to identify the most important target areas 

for mitigation. 

1. Introduction 
Our understanding of the linkages between nutrient source zones, surface water 

pathways, and channel water quality remains incomplete (Ali & Creed, 2017; Calhoun et al., 

2017; Wu & Lane, 2017).  Hydrological characteristics of the landscape play an important role in 

the conversion of rainfall to runoff, and the presence of surface flow pathways is an important 

factor controlling transport of sediment and nutrients across landscapes (Ali & Creed, 2017; 

Heathwaite et al., 2005; Sen et al., 2010; Outram et al., 2016). The development of a simplistic 

and computationally manageable model to quantify surface flow pathways is a necessary first 

step to assess possible impacts on nutrient loadings.   

Phosphorus (P), a nutrient found in high concentrations in agricultural catchments, 

predominantly binds to sediments and is transported to stream networks after becoming 

entrained in surface runoff (Molder et al., 2015; Sen et al., 2009). The mechanisms which allow 

for surface runoff generation can be categorized as saturation-excess or infiltration-excess 

overland flow (Ali et al., 2017). Saturation-excess overland flow (SOF) occurs when the soil 

column becomes completely saturated with water, hindering any additional infiltration and 

causing additional water to flow along the surface (Hoang et al., 2017; Srinivasan et al., 2002). 



Alternatively, infiltration excess overland flow (IOF), also referred to as Hortonian overland 

flow, occurs when the precipitation rate exceeds the soil infiltration rate, causing runoff 

generation before the soil column becomes saturated (Reli et al., 2016; Srinivasan et al., 2002). 

SOF and IOF can vary spatially and temporally based on land-use, topography, and climate, 

which has allowed scientists to identify areas within a landscape where these mechanisms are 

likely to occur (Gburek & Sharpley, 1998; Srinivasan et al., 2001, 2002). These runoff generating 

areas, deemed as hydrologically active areas (HAAs), have been shown to contribute 

disproportionately to P transport and the hydrological response of watersheds (Ali et al., 2017; 

Sen et al., 2008; Zollweg et al., 1995). A study conducted by Zollweg et al. (1995) found that a 

1% change of land-use in HAAs reduced the transport of dissolved P by 24%, highlighting the 

importance runoff can have when transporting nutrients throughout a catchment.  

Although our current understanding of watershed connectivity and the delivery of 

nutrients from landscapes to channel networks is limited, few studies have sought to quantify 

runoff generating areas (Ali & Creed, 2017; Calhoun et al., 2017; Wu & Lane, 2017). GIS 

approaches to hydrology and runoff modelling provide a way to analyze hydrological processes 

spatially, which is useful for implementing targeted mitigation efforts and accurately 

quantifying HAAs in specific regions. This study will use a multi criteria evaluation (MCE) to 

quantify the spatial variability of HAAs based on two runoff generation mechanisms (RGMs), 

SOF and IOF. An MCE will not definitively quantify the presence of runoff flow pathways; rather, 

it will predict where HAAs could occur based on environmental conditions that facilitate specific 

RGMs. Through applying different environmental criteria in an MCE, we can consider multiple 

factors and identify if a distinct type of runoff is likely to occur though the creation of runoff 

generation indexes. These indexes may be used to quantify the relative degree of hydrological 

activity within a watershed for each RGM. Assuming HAAs can be quantified on a landscape, the 

correlation between P concentrations and surface runoff potential can be assessed.  

Several studies have suggested runoff generation is spatially variable, and that HAAs and 

runoff pathways are important for nutrient transport (Ali et al., 2017; Gburek & Sharply, 1998; 

Sen et al., 2010). Therefore, the objectives of this study are to: 

1. Identify relevant environmental criteria that facilitate RGMs (IOF and SOF) and prepare 

datasets for MCE models. 

2. Generate RGM indexes (MCE model outputs) that quantify potential HAAs. 

3. Assess the relationship between RGM indexes and phosphorus concentrations in 

associated stream networks. 

4. Assess the strengths and limitations of the MCE model approach for quantifying HAAs.

2. Study Area 
The location for the study is the Grand River Watershed (GRW) located in southern 

Ontario, Canada (Figure 1). This is the largest Canadian watershed (6,800 km2) which drains into 
Lake Erie, the most nutrient polluted of all the great lakes (GRCA, 2020; ECCC, 



2018). Historically, agricultural land use practices which dominate the watershed have led to 
high levels of nutrients becoming mobilized during runoff events, leading to large algal blooms 
and other water quality concerns in receiving waters (Watson et al., 2016). Therefore, 
examining the extent of HAAs for various RGMs in the GRW may allow us to determine the 
possible nutrient transport pathways into the stream network and ultimately Lake Erie.   

Figure 1: The Grand River Watershed, as seen from a larger scale to a smaller scale. The Watershed boundary was exported 
from Grand River Information Network (2018). The base-map was created using ArcGIS® software and imagery provided by Esri.  

3. Methods and Data 
To produce viable, yet effective MCE models, both RGMs (SOF and IOF) need to be 

quantified separately, as evaluating them simultaneously has shown limitations in accuracy (Liu 
et al., 2020). The SOF mechanism typically occurs in low-lying topographic regions, and areas 
near streams and gullies. Alternatively, the IOF mechanism typically occurs on relatively 
impermeable surfaces such as urban roads and dry or compacted agricultural fields. Since there 
are variable areas throughout the watershed that facilitate each RGM, creating two MCEs to 
look at SOF and IOF independently will ensure both runoff types are being accurately quantified 
within the watershed.  

Three factors were chosen for each runoff generation type and identified through 

expert consultation and reviews of relevant literature (Table 1). The included criteria represent 

only static environmental variables, rather than dynamic variables such as storm characteristics 

and antecedent moisture conditions. There exists a large knowledge gap in how storm 



characteristics and catchment moisture control P flux, thus making predictions about nutrient 

concentrations based on precipitation events difficult (Davis et al., 2014). Therefore, we chose 

to include proxies for only the most important and well-researched factors controlling the 

proportion of precipitation that is converted to runoff (Table 1). To facilitate accurate 

processing and support the robust computation and interaction of data layers, all layers were 

generated in raster format with 5 m cell resolution and reprojected to NAD83 UTM Zone 17 N. 

The datasets were clipped to the extent of the GRW, and all layers were standardized to a 

common scale using a basic linear stretch, shown in Equation 1 as: 

𝐸𝑄𝑈𝐴𝑇𝐼𝑂𝑁 1:            𝑥𝑖𝑗
′ = 𝑅𝑎𝑛𝑔𝑒 (

𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
) 

where x’
ij is the standardized score for a given cell in the output raster, range is the 

standardized scale (0-1), xij is the value for a given cell in the input raster, xmin and xmax are the 

minimum and maximum cell values for the input raster (Bonnycastle et al., 2017). 

Table 1: Criteria used for SOF and IOF MCE models. 

SOF IOF 

1. Topographic Wetness Index 

2. Normalized Difference Vegetation 
Index (NDVI) 

3. Land-use Data 

1. Hydrologic Soil Groups 

2. Normalized Difference Vegetation 
Index (NDVI) 

3. Land-use Data 

3.2 Individual Environmental Criteria 

3.2.1 NDVI 

 LANDSAT 8 images, obtained from USGS (2020) with a filter date of April 1, 2015 – 

November 1, 2015, were used to generate a median normalized difference vegetation index 

(NDVI). The NDVI is the result of combining the spectral signatures from the red (RED) and near 

infrared (NIR) bands using Equation 2 and provides an accurate indication of the health and 

density of vegetation cover across a landscape (Brown, n.d.). Note, to produce accurate index 

results, cloud cover and cloud shadows were masked out of the image prior to calculation. NDVI 

was chosen as a criterion because vegetation cover is an important factor governing the 

conversion of rainfall to runoff (Liu et al., 2020). As vegetation health and density increases, the 

likelihood of interception, evapotranspiration, and root water uptake also increases (Liu et al., 

2020). This reduces the rate and volume of water that reaches the soil layer, thus limiting 

runoff generation. Since the NDVI quantifies vegetation broadly into discrete classes (Table 2), 

generalizations about the processes controlling runoff generation were made to reclassify the 

data. A generalized ranking for the likelihood of runoff generation was assigned to the three 

vegetation classes (Table 3), based on the findings from Zimmermann, Elsenbeer, and De 

Moraes (2006). As land-use is considering all land-cover types, by including the NDVI separately 

we isolate the impacts from vegetation from the impacts of all land covers. 



𝐸𝑄𝑈𝐴𝑇𝐼𝑂𝑁 2:    𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷) 

Table 2: Reclassification of the NDVI values to three classes based on the scheme outlined by Brown (n.d.). 

 

 

 

 

 

Table 3: Specific NDVI classifications for both the SOF and IOF, derived from the findings of Zimmermann, 
Elsenbeer, and De Moraes (2006). 

Vegetation Class Runoff Score  

0 - Non-Vegetation 2 - Highly Likely 

1 - Low Vegetation 1 - Possible 

2 - High Vegetation 0 - Unlikely 

Vegetation Classes Description NDVI Value 

0 - Non-Vegetation Barren, built-up areas, and 
road networks. 

-1 to 0.199 

1 - Low Vegetation Sparse Vegetation 0.200 to 0.500 

2 - High Vegetation Dense Vegetation 0.501 to 1 
 



 

Figure 2: Map of the runoff index for NDVI based on the suitability classification in Table 4. White (value = 1) 
regions of the map depict areas where vegetation characteristics are conducive for runoff generation, and black 
(value = 0) represents areas where runoff generation is highly unlikely.  

3.2.2 Land Use 

A 15 m resolution land-use raster was retrieved from the SOLRIS (2015) dataset. Certain 

land-use types have known implications on hydrological responses (Endreny, 2005). However, 

only broad assumptions can be made about how certain land classes will impact runoff 

generation (Niehoff, Fritsch, & Bronstert, 2002). Because land-use only provides broad 

classifications based on generalized above-surface features and does not account for specific 

topographical, vegetation, or soil characteristics that can influence runoff generation, it was 

allotted the lowest weighting. However, land-use data fills gaps in the NDVI data relating to 

specific vegetation classes. While NDVI does not discretely classify vegetation types, land-use 

addresses these vegetation differences (crops, grasslands, forests, etc.). The original dataset 

was reclassified from thirty-two discrete classes to eleven based on similar land-use 

characteristics (Table 4). This was then reclassified into 4 key classes which represent how 

conducive each land use type is for each RGM (Table 5). 

 

 



Table 4: Reclassified land-use data, based on the similarities in land-use type. 

Reclassified Data 

Land-Use Class New Class ID 

Beach/Sand Dunes 0 

Exposed Bedrock 1 

Grasslands 2 

Forests 3 

Wetlands 4 

Open Water 5 

Agriculture 6 

Urban 7 

Extraction: Gravel 8 

Extraction: Peat 9  

Other 10 

Table 5: Land-use classes created for both the SOF and IOF, derived from the findings of: Endreny, 2005; Lyon, 
McHale, Walter, & Steenhuis, 2006; and Niehoff, Fritsch, & Bronstert, 2002. 

 

Newly Reclassified ID Categories Reclassified Based on Runoff Generation Likelihood 

Likelihood Ranking Likelihood of IOF Likelihood of SOF 

0 - Very Unlikely Beach/Sand Dunes; Wetlands; 
Extraction; Gravel 

Beach/Sand Dunes; Exposed 
Bedrock; Forests; Extraction: 
Gravel 

1 - Unlikely Forests Agriculture; Urban; Extraction: 
Peat 

2 - Likely Grasslands; Agriculture; 
Extraction: Peat; Other 

Grasslands; Other 

3 - Highly Likely Exposed Bedrock; Urban; Open 
Water  

Wetlands; Open Water 



 

Figure 3: Map of the runoff indexes for land-use types based on the suitability classification in Table 6. The left and 
right maps depict the resulting land use suitability maps for IOF and SOF respectively. White (value = 1) regions of 
the map depict areas where land-use characteristics are conducive for runoff generation, and black (value = 0) 
represents areas where runoff generation is highly unlikely.  

3.2.3 Hydrologic Soil Groups 

 Hydrologic Soil Groups were retrieved from the Soil Survey Complex dataset compiled 

by the Ontario government. It is composed of vector polygons and has a 1:10,000 scale. This 

dataset is classified based on the infiltrability of the soil, which is the most important factor 

determining the capacity for IOF (Helalia, 1993). More porous soils like gravels and sands are 

much easier for water to infiltrate and therefore have a lower capacity for IOF runoff 

generation (Reli et al., 2016). Finer soils like silts and clays have smaller pores, slowing the rate 

at which water can infiltrate and are therefore more conducive to IOF (Reli et al., 2016). Soils 

were classified based on their capacity for infiltration and runoff generation potential as 

described in Chisholm et al. (1984) (Table 6).  

Table 6: Soil group classes based on capacity for IOF runoff generation. 

Soil Group Likelihood of IOF 

Very High Porosity 1 

High Porosity 2 

Low Porosity 3 

Very Low Porosity 4 

Impervious Surfaces 5 



 

Figure 4: Map of the runoff index for hydrological soil characteristics based on the suitability classification in Table 
7. White (value = 1) regions of the map depict areas where soil characteristics are conducive for IOF runoff 
generation, and black (value = 0) represents areas where the occurrence of IOF is highly unlikely. 

3.2.4 Topographic Wetness Index (TWI)  

 The most important factor governing the generation of SOF is topography (Hoang et al., 
2017). Topographic wetness index (TWI) is one of the most used hydrologically based 
topographic indexes and is defined as follows: 

𝐸𝑄𝑈𝐴𝑇𝐼𝑂𝑁 3:                𝑇𝑊𝐼 = ln (
α

tanβ
)                         

where α is the Specific Catchment Area (SCA) (also known as flow accumulation) and β is the 
slope angle (Małgorzata et al., 2018; Mattivi et al., 2019). Areas prone to water accumulation 
will be linked to high TWI values, and are more likely to generate SOF. A 1 m resolution digital 
terrain model (DTM) was retrieved from the High-Resolution Digital Elevation Model (HRDEM) 
dataset compiled using LiDAR data by the Government of Canada (Government of Canada, 
2020). Depression filling is required to prepare DTM data sets for hydrological analyses 
(Lindsay, 2020). The DepressionBreachingLeastCost tool available from Whitebox Tools was 
used because it offers a lower-impact alternative to depression filling to remove topographic 
depressions (Lindsay, 2020). The breached DTM was then used to calculate flow direction and 
slope. Using the spatial analyst work package in ArcGIS, flow direction (FD) was calculated using 



the Flow Direction tool and the D-inf flow algorithm, and slope was calculated in degrees using 
the Slope tool. The FD layer was subsequently used as an input to compute flow accumulation 
(SCA) using the Flow Accumulation tool available in ArcGIS.  

 

Figure 5: Map of the runoff index for the topographic wetness index (TWI), whereby higher TWI values correspond 
to areas of water accumulation (a.k.a., landscape drainage or surface flow pathways). White (value = 1) regions of 
the map depict areas where the topography of the landscape is conducive for SOF runoff generation, and black 
(value = 0) represents areas where the occurrence of SOF is highly unlikely. 

3.3 Factor Weightings 
Since some factors are more important for generating runoff than others, it is necessary 

to assign weights to each criterion (Bonnycastle, et al., 2017). Pairwise comparison matrixes 
(PCM) were used to establish factor weights for each assessment (IOF and SOF). This is a 
common method used for MCEs, whereby factor layers are compared two at a time, and the 
relative importance of one factor over another is assigned using a hedonic scale (Bonnycastle, 
et al., 2017; Saaty, 1977). Relevant literature and expert opinions were used to ascertain the 
relative importance of each criterion, and scores were assigned based on interpretations of the 
findings from interviews and literature review. An example of the PCM for IOF depicts how 
initial weights are assigned (pairwise ranks) and related to the individual and total weights 
(Table 7).  

 



Table 7: Pairwise comparison matrix created to establish factor weights for the criterion used to predict IOF runoff 
generating areas. 

IOF Pairwise Ranks Individual Weights Total Weights 

Porosity NDVI Land Use Porosity NDVI Land Use   

Porosity 1.00 5.00 9.00 0.76271 0.78947 0.692308 0.748164414 

NDVI 0.20 1.00 3.00 0.15254 0.15789 0.230769 0.180402113 

Land Use 0.11 0.33 1.00 0.08475 0.05263 0.076923 0.071433473 

SUM 1.31 6.33 13.00 1.00 1.00 1.00 1.00 

 

3.4 MCE Algorithm 
In this study, we used a Simple Additive Weighting approach to perform the MCE (Figure 

6), where continuous criteria are rescaled to a standardized range (0-1) and combined using a 

weighted summation, shown in Equation 4 as: 

EQUATION 4:                SUIT= ∑ wkxk                         

where SUIT is the suitability (index) layer resulting from the MCE (i.e., likelihood of runoff 

generation), and wk are the various weights corresponding to each respective xk layer 

(Bonnycastle et al., 2017; Lamelas et al., 2012).  

 



Figure 6: Image depicts the workflow for running the simple additive weighting MCE model. Each pre-processed 
criterion (left) is multiplied by its assigned weight, and all weighted layers are summed (i.e., overlayed) to produce a 
‘suitability’ RGM index (i.e., runoff score). The output map is assigned values using the same scale as the input 
layers (0-1).    

 3.5 Linear Regression Analysis 
 Phosphorus data was retrieved from the Provincial (Stream) Water Quality Monitoring 

Network database. Quaternary watershed boundaries were retrieved from the Ontario 

Watershed Boundaries (OWB) collection released by the Provincial Mapping Unit (2020). Sub-

watersheds that were located within the larger Grand River watershed were extracted from the 

provincial dataset. In total, 28 sub-watersheds lie within the Grand River watershed, and the 

IOF and SOF index maps were clipped to the boundaries of each of these sub-watersheds. Only 

stream monitoring stations at or near sub-watershed outlets were used in the regression 

analysis. A threshold distance of 5 km from sub-watershed outlets was used to select 

monitoring stations, assuming that water quality is relatively constant within a 5 km stream 

reach. Stations located downstream from major confluences with high order streams from 

other sub-watersheds were not included. This selection process was implemented to ensure 

phosphorus data was specific to its respective sub-watershed. Of the 28 sub-watersheds in the 

study area, 18 had monitoring stations which met the selection criteria and were used in the 

linear regression. All available phosphorus data from 2015 was averaged to yield an annual 

average phosphorus concentration for each monitoring station.   

 Index scores were calculated for each of the sub-watersheds by summing the index 

values for IOF and SOF independently in each of the sub-watersheds. Sums were then 

normalized by sub-watershed area to yield IOF and SOF normalized index scores. These scores 

are considered as an accurate quantification of the potential for both RGM in each of the 18 

selected sub-watersheds. These scores were regressed with average phosphorus 

concentrations to evaluate their relationships.  



 

Figure 7: The project workflow for the development of various data layers, and how they were combined to perform 
the corresponding MCEs for SOF and IOF. 



4. Results 

4.1 Runoff Generation Indexes 
 The resulting IOF and SOF runoff generation indexes are presented in Figure 8. Visually, 

the resulting indexes look quite dissimilar in respect to the spatial distribution of HAAs across 

the landscape. Since the IOF criterion were rasterized from broad-scale discrete vector 

polygons, the model predicted that large areas (such as cities and agricultural fields) were likely 

to produce runoff. Opposingly, the SOF model results indicate that runoff only occurs in low-

lying saturated areas, due in part to the use of continuous criteria (TWI). This coincides with 

previous research which found that IOF runoff occurs over larger areas, whereas SOF tends to 

be more localized and isolated to topographic depressions (Panjabi et al., 2020).  



Figure 8: Runoff generation index maps after performing SAW process. The left maps (top and bottom) depict the 

results for probable SOF runoff generating areas, and the right maps (top and bottom) depict the results for IOF. 



The finer scale images (bottom row), showing runoff scores for Guelph, ON, highlight the contrasting continuous 

and discrete nature of the MCE outputs for SOF and IOF respectively. Sub-watershed boundaries are also depicted 

in the maps in the top row, representing the 28 sub-watersheds used to clip the MCE output maps.  

4.2 Relationships Between Normalized Runoff Generation Indexes and Average 

Phosphorus Concentrations at the Sub-Watershed Scale 
Results from the linear regression returned diverging results for the two normalized 

RGM indexes. It was determined that the normalized IOF index is positively correlated with 

phosphorus concentrations as displayed by the positive coefficient in the regression equation (y 

= 5.06E-06(x) – 0.01; R2 = 0.312; p-value = 0.016). The R-squared value indicates that the IOF 

index accounts for about a third of the variance in the phosphorus concentration data. The p-

value indicates that this information can be accepted at greater than 98% confidence. In 

contrast, the normalized SOF index is negatively correlated with phosphorus concentrations as 

displayed by the negative coefficient in the regression equation (y = -1.57E-05(x) + 0.19; R2 = 

0.087; p-value = 0.236). The low R-squared value indicates that the SOF index is not well 

correlated with phosphorus concentrations. The high p-value indicates that this information is 

also likely not statistically significant. Based on the results from the linear regressions, the 

normalized IOF index is a better predictor for phosphorus concentrations than the SOF index. 

  
Figure 9: Scatter plots and regression lines from linear regression models for IOF index (left) and SOF index (right). 

Outlier points are indicated in red. 

The three most significant outliers in the IOF regression (based on distance from the 

regression line; points highlighted in red in Figure 9) were investigated further using Google 

satellite imagery to see if their deviance could be explained by land cover characteristics. The 

three outlier points above the regression line had much higher phosphorus concentrations than 

expected compared to potential IOF runoff generation in their respective watersheds. All three 

stream monitoring locations are situated less than 3 km downstream of large urban centers 

(Brantford, Kitchener and New Hamburg) which are likely disproportionally increasing the 

concentrations of phosphorus near the outlets (Janke et al., 2017). Results also indicate that 

SOF is less variable per watershed area compared to IOF, as displayed by the narrower boxplot 

range (Figure 10).   



 

Figure 10: Box plots for normalized IOF and SOF index scores for the 18 sub-watersheds used in the linear 
regression. Boxes include median lines. Boxes represent the 2nd and 3rd quartiles for the normalized sub-watershed 
scores. Whiskers represent the 1st and 4th quartiles. N = 18. 

5. Discussion 
Modelling the spatial distribution of HAAs is challenging, as runoff generation is 

influenced by a broad range of variables. We considered the most important variables for each 

RGM, but additional variables such as hydrological conductivity of soils, underlying geology, 

antecedent conditions, and storm properties (i.e., intensity, duration) are more difficult to 

accurately represent (Panjabi et al., 2020; Sen et al., 2010). Despite these challenges, the 

models were able to identify distinct areas across the landscape where each RGM is most likely 

to occur based on variables considered. Because SOF is highly influenced by flow direction and 

flow accumulation, it modelled distinct flow pathways better than IOF did. While IOF was 

predicted to occur over broader areas, a limit to the IOF map is that it did not consider or model 

flow pathways.  

The results from the linear regression indicate that IOF is the dominant RGM driving 

phosphorus transport from surface to stream, and that greater IOF runoff generation potential 

in watersheds equates to higher phosphorus concentrations in streams. Results also indicate 

that greater SOF potential may decrease phosphorus concentrations in associated streams. 

These results may be explained by specific RGM characteristics. IOF typically occurs in areas 

where water is more likely to be transported across a surface with elevated slope (Reli et al., 

2016). Opposingly SOF will typically extend outwards from areas of water accumulation and 

may eventually drain back into the depression it extended from (Thomas et al., 2016). 

Accounting for flow pathways would improve the accuracy of the IOF index, so while this 



relationship is not based upon a precise flow map, these results support that IOF is the larger 

driver of phosphorus from surface to stream. 

In addition to spatial variability of runoff generating areas, it is also important to 

understand the hydrologic connectivity of these areas. Hydrologic connectivity refers to the 

water movement from one location to another on a landscape which can generate some 

surface runoff response (Bracken & Croke, 2007). While the SOF index accounts for hydrological 

connectivity and model flow pathways more accurately than IOF, it showed the lowest 

correlation with phosphorus. While the statistical relationship between IOF and phosphorus 

concentrations was stronger, the results indicate there are more complex mechanisms at play 

(i.e., phosphorus source zones and recharge times). Overall, the MCE approach to modelling 

surface runoff is a reasonable and manageable way of mapping HAAs and can be used in 

determining the dominant runoff generating mechanism in a watershed. This model provides 

interesting results given data limitations and can be reproduced easily in other watersheds with 

limited data and GIS-expertise. 

6. Conclusion 
This study presents a new method for quantifying runoff generation potential through 

SOF and IOF indexes and adds to our understanding of how surface hydrological processes 
impact phosphorus concentrations. The results indicate that IOF is more closely related with 
phosphorus transport, and this should be considered when planning targeted mitigation 
strategies to address phosphorus pollution. The results of this study should be used in 
conjunction with known phosphorus loading zones to quantify hydrologically sensitive areas 
(HSA), which consider surface runoff propensity, hydrological connectivity, and nutrient sources 
(Thomas et al., 2016). These recommendations could be applied in future research to identify 
the most critical areas for nutrient loading mitigation with respect to runoff generation 
potential. Furthermore, to improve on the SOF and IOF results, future studies should consider 
additional variables for each RGM and could include flow maps to better quantify runoff 
reaching stream networks.    
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