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Abstract 
 Cyanobacterial algal blooms in Lake Erie severely impact the economy of various 
industries in the surrounding areas as well as human and wildlife health. The tourism 
industry alone faces an annual loss of up to $110 million (Smith et al., 2019). Tourism 
decreases when the beaches become unsuitable for swimming and even more when 
fishing prospects decrease after the waters become uninhabitable for sensitive fish 
species (Smith et al., 2019). Moreover, the Microcystin toxin produced by the blooms 
can poison marine life, humans, and human resources. It would be greatly beneficial for 
both tourism revenue and human health to be able to estimate cyanobacterial bloom 
quantity and density using data collected from environmental variables to help decision 
makers design strategies that can reduce the severity of Cyanobacteria blooms and 
preserve the economy of the industries that depend on lake erie. The aim of this study 
was to first identify the environmental variables that contribute to Cyanobacteria blooms 
and investigate how their quantities impact the quantity and density of the blooms. This 
study implements a multiple linear regression analysis to identify the relationships 
between Cyanobacteria density derived from satellite imagery and environmental 
factors such as phosphorus, nitrogen, and water temperature. Results of the regression 
analysis show a positive linear relationship between nutrient concentrations of 
phosphorus and nitrogen and Cyanobacteria density. It was also seen that spatial 
displacement of the blooms due to water current and wind displacement (CBC, 2019) 
tended to undermine the positive linear relationship between nitrogen, phosphorus, and 
Cyanobacteria density. A geographically weighted regression that was additionally run, 
made evident that phosphorus had a higher weighting in the model the closer it was to 
the Maumee Bay, indicating that the Maumee River inlet is a likely cause for high 
phosphorus levels in run-off during bloom season. 

1. Problem Context 
In recent decades, climate change has become a globally growing concern, 

especially for water bodies. Increased water surface temperature, decreased water pH, 
and increased frequency of algal blooms are all consequences of a rise in global 
temperatures (Moore et al., 2008; Parry et al., 2007). The increase in algal blooms 
occur when changes in temperature alter the water column’s stratification causing 
mixing between the nutrient rich bottom layers of water with warmer upper layers of 
water. This mixing then supplies Cyanobacteria located in the warmer upper layers of 
water with nutrients required for growth, thus triggering bloom events (Moore et al., 
2008). 
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Cyanobacteria, a photosynthetic organism (Vermaas, 2001), that usually thrives 
in warm, shallow, calm waters like beaches, bays, and coasts (Chen et al., 2014; 
Bennington-Castro, 2015). Climate change increases the frequency and severity of 
blooms by warming waters, increasing available solar energy, increasing CO2 as inputs 
for photosynthesis, and increasing potential blooming areas when rising global water 
levels expand bays (Environmental Protection Agency, 2019). Cyanobacteria blooms in 
Lake Erie is a severe problem that has led to beach shutdowns, loss of drinking water 
for some cities, and loss of an estimated annual revenue of $272 million (Smith et al., 
2015; Haggert, 2019). In severe cases, Cyanobacteria can bloom into a Harmful Algal 
Bloom (HAB). HABs are more detrimental than their normal counterparts as they may 
produce neurotoxins, liver toxins, and cell toxins, that can affect drinking water, enter 
the food chain through fish, kill large fish populations, and poison marine ecological 
systems (Sivonen & Jones, 1999; Foster, 2013). Moreover, Cyanobacteria blooms can 
also create dead zones which are hypoxic environments caused by bloom overgrowth; 
this can restrict other organisms’ access to O2 and sunlight (Altieri & Gedan, 2014).  

 
Even though a multitude of factors have been linked to Cyanobacteria blooms, 

such as Phosphorus, Nitrogen, water temperature, water depth, and time of year; there 
are still knowledge gaps in this field of study. One of these knowledge gaps include the 
factors that cause the Microcystin producing Cyanobacteria genus (Microcystis) to 
prevail in competition amongst other Cyanobacteria genus during a bloom event. It is 
important to fill this knowledge cap because the Microcystin toxin is one of the most 
devastating byproducts of a harmful algal bloom, and is thus a point of interest (Harke et 
al., 2016). 

2. Research Purpose 
To investigate the relationship between environmental variables and the density 

of cyanobacteria through the use of a GIS Model. 

3. Research Objectives 
Objective 1) 

Identifying factors and variables that impact the density of algal blooms. 
 
Objective 2) 

Developing a GIS based model that can be used to evaluate the density of algal 
blooms in the western basin of Lake Erie. 

 
Objective 3) 
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 Apply the model to determine whether the observed variables impact the 
behaviour of algal bloom density.  

 
Objective 4) 
 Evaluate the Strengths and Weaknesses of this study. 
 

4. Study Area 
Located on the international border between Canada and the United States is 

one of the Great Lakes, Lake Erie. It is the shallowest of all 5 of the Great Lakes and its 
biggest inlet is the Detroit River which feeds into its western basin. Upon entering, the 
water flows east until it reaches its biggest outlet in the east basin, the Niagara River 
(Watson et al, 2016). 

In the 1960s, Lake Erie was heavily affected by algal blooms due to excessive 
amounts of phosphorus pollution, and the toxins produced by the algal blooms caused 
the inhabiting fish to die in large numbers (Foster, 2013).  

 
 In 2011 nearly 20% of Lake Erie was covered in a type of Cyanobacteria known 
as Microcystis, which secretes a toxin that can cause extreme sickness (Foster, 2013). 
The Maumee, Sandusky, and Raisin River inlets are significant contributors to 
agricultural runoff for the western basin of Lake Erie, which will be the prime focus of 
this study (Bosch et al., 2014). 

 
 Lake Erie’s western basin, shown in Figure 1, has experienced a large amount 

of worsening algal blooms (Foster, 2013). The recent increase in algal blooms is large 
enough that it can be seen through satellite imagery, as shown in Figure 2. The most 
heavily impacted area in Lake Erie’s western basin is the area near Maumee Bay which 
receives a large amount of agricultural nutrient runoff from the Maumee, Sandusky, and 
Raisin River inlets (Bosch et al., 2014). This area can be seen in Figure 2 and will be 
the primary focus of our research. Focusing on this area should provide both nutrient 
and bloom data to then create a model that will provide insight into the causes behind 
algal bloom. 
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Figure 1: A time series of Lake Erie’s bloom severity. Shown to be increasing from 
2002 to 2017. 
Adopted from  https://news.osu.edu/noaa-partners-predict-large-summer-harmful-algal-
bloom-for-western-lake-erie/ 

https://news.osu.edu/noaa-partners-predict-large-summer-harmful-algal-bloom-for-western-lake-erie/
https://news.osu.edu/noaa-partners-predict-large-summer-harmful-algal-bloom-for-western-lake-erie/
https://news.osu.edu/noaa-partners-predict-large-summer-harmful-algal-bloom-for-western-lake-erie/
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Figure 2: Imagery of the western most area of Lake Erie 

 
 

5.  Research Approach 
This study accomplished the research objectives using the following approaches:  
 

Objective 1: Identify factors and variables that relate to the density of algal 
blooms. 
 Developing a regression model requires two key pieces of data: A response 
variable and a set of explanatory variables. The response variable of the will be the 
focus of the study. The study will attempt to explain why this phenomenon occurs, and it 
will do that by comparing the response variable to the explanatory variables. This study 
aims to establish a relationship between the behaviour of the explanatory variables in 
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relation to the response variable. The response variable for this study was the 
Cyanobacteria Index (CI), which was used as a proxy for the presence of algal blooms. 
The explanatory variables were identified using scientific literature; Based on our 
research, which is outlined below, we believed phosphorus, nitrogen, and water 
temperature would have a statistically significant relationship with algal bloom growth. 
 
 
Response Variable -- Cyanobacteria Index 
 Cyanobacteria index was used as a proxy for algal blooms (Ogashawara, 2019). 
The data used is a product that indicates the density of Cyanobacteria present within 
each raster cell. Part of the model for this project reclassifies the imagery to find the 
maximum density value in a specified area. 
 
Explanatory Variable -- Phosphorus 
 Phosphorus has been observed to be a likely accelerant in the growth of algal 
blooms (Bachmann et al., 1974). It has also been identified by Environment Canada to 
be the primary driver for eutrophication in Lake Erie causing Cyanobacteria blooms 
(Government of Canada, 2018). 
 
Explanatory Variable -- Nitrogen 
 Like phosphorus, nitrogen is a known bio-element to play a role in the growth of 
HABs (Herrero et al., 2001), and nitrogen levels are known to have increased in Lake 
Erie (Lane, 2019). 
 
Explanatory Variable -- Water Temperature 
 Water temperature is an indicator of aquatic seasonal turnover which is when 
most problematic HABs occur (Pitcher et al., 2010), changes in temperature due to 
climate change impacts the timing and fullness of a complete turnover which can result 
in changes in nitrogen and phosphorus ratios as well as increased water temperatures 
for longer periods, both of which are favourable conditions for Cyanobacteria growth 
(Posch et al., 2012; Climate Change and Harmful Algal Blooms, 2019). 
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Table 1: Data layers to be used in the model 

Dataset Type Source Publisher Spatial  
Resoluti
on 

Temporal 
Resolutio
n 

Year 

Cyanobacteria 
Index 

GeoTIF
F  

Copernicus 
Sentinel-3a 
& 3b 
satellites, 
OLCI 
sensor 

NOAA 300m Daily May to 
October 
 
2017 to 
2019 

Phosphorus 
 

CSV NOAA 
WEXX 
sampling 
stations 

NOAA 0.01 µg 
P/L 
 
 
 

Weekly May to 
October 
2012 to 
2018 

Nitrogen CSV NOAA 
WEXX 
sampling 
stations 

NOAA 0.01 mg 
N/L 
 

Weekly May to 
October 
2012 to 
2018 

Water 
Temperature 

CSV NOAA 
WEXX 
sampling 
stations 

NOAA 0.01°C Weekly May to 
October 
2012 to 
2018 

 
The first dataset consists of GeoTIFF raster images for Western Lake Erie 

spanning 2017-2019. The images have been processed and reclassified by NOAA 
through their in-house Cyanobacteria Index algorithm (Vander Woude et al., 2019). The 
raster values representing the Cyanobacteria Index will be used in our model to observe 
the response variable, the average density of Cyanobacteria blooms. 

 
The three explanatory variables of phosphorus, nitrogen, and water temperature 

will be obtained from nine National Oceanic and Atmospheric Administration (NOAA) 
nutrient sampling stations dispersed in and around Maumee Bay in Lake Erie’s Western 
Basin. These points provide samples either weekly or biweekly. The dispersion of the 
nine NOAA water quality buoys is illustrated below in Figure 3. 
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 Figure 3: A map created by NOAA illustrating the locations of their sampling stations. 
Adopted from https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/graphics/WLE2018Map.jpg 
 
Objective 2: Develop a GIS based model that can be used to evaluate the density 
of algal blooms in the western basin of Lake Erie. 

The model for this study consisted of two main components. The first component  
is the spatial analysis while the second one is the statistical analysis.  

 

https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/graphics/WLE2018Map.jpg
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Figure 4: A diagram visualizing our workflow model.  

 
The first step of the model, referred to as Process 1a and Process 1b in figure 4 

was to sort and clean our data inputs. These inputs consisted of Cyanobacteria Index 
GeoTIFFs with daily temporal resolution during bloom season (May-October) of 2017-
2019, and a CSV file with nutrients sampled weekly during bloom season of 2012-2018, 
with samplings occurring at 9 different stations. The first step in cleaning was to select 
the rasters which had corresponding dates with the weekly sampled data. The second 
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step was removing rasters with excessive cloud cover. After this step, 38 rasters 
remained which then led to the first step of cleaning the CSV. The CSV & rasters 
matched up temporally prior, but due to rasters being removed, corresponding dates 
within rows of the CSV also had to be removed. 295 rows remained after this clean-up. 
The CSV also had some inaccuracies with various sampling row’s coordinates which 
needed to be manually replaced with the correct coordinates that were provided in a 
coordinate master file for the sampling stations.  
 

The next part of the model consisted of spatial processing and analysis. Process 
1c, as shown in figure 4, was to plot the coordinates of the 9 sampling stations and 
create a 3.5 km buffer around each of them in a single shapefile. The distance of 3.5 km 
was selected by using the distance between the 2 closest sampling sites, we wanted to 
maximize buffer size without having overlap with other sampling sites. Process 2a (refer 
to figure 4 & 5) was to reclassify the rasters to remove cloud cover and other invalid 
values so that these values would not interfere with statistical raster calculations later 
on. Process 3 was to use the Zonal Statistics tool in ArcMap to cut each of the 38 
reclassified rasters into a raster containing nine 3.5 km buffers.  Each buffer was 
assigned the raster’s maximum value within said buffer’s range. Maximum was selected 
as the statistic type to measure potential of bloom density because blooms are prone to 
wind/current displacement and there is already a low temporal resolution of 1 week 
giving bloom displacement a fairly good probability of occurring. Process 2b (refer to 
figure 4) created a shapefile of 295 points with an attribute table of nutrient sampling 
data from the CSV. Process 4 (figure 4) used the ‘Extract Multi Values to Points’ tool in 
ArcMap to append the values of the maximum buffers into the attribute table of the 295 
nutrient points shapefile. These appended values represented the Maximum observed 
Cyanobacteria Index within a 3.5 km buffer range, and was exported to a CSV. This 
Nutrients with Max Cyanobacteria CSV however was still using the scaled down 8-bit 
raster values to represent Cyanobacteria, and so consequently had to be rescaled to 
true Cyanobacteria density values in cells/ml by using the re-scaling equation from the 
data provider NOAA. See equation (1): 
                       𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 =  10(3÷250×(8−𝑏𝑏𝑏𝑏𝑏𝑏 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)−4.2) × 100000000                         (1) 

This re-scaled nutrients with Cyanobacteria CSV was used in a multiple regression 
analysis(described in the next paragraph), as well as a geographically weighted 
regression analysis to produce a 3D graph that plots the relationship between the 
density of algal blooms and the explanatory variables. 
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Figure 5: Spatial processes, as referred to in Figure 4. Maximum raster value within 
buffer analysis. Raster value represents Cyanobacteria density in cell/ml as shown in 

legend. 
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The second, more statistical component of our model was the multiple regression 
analysis. The regression model was chosen because of its suitability to finding the 
causal effect relationship between an explanatory variable and multiple different 
explanatory variables (Ray, 2019). Regression analysis also provides certain benefits 
like indicating the significant relationships and strength of impact of multiple explanatory 
variables on a response variable (Ray, 2019). In multiple linear regression there will be 
more than one explanatory (X) variable (Khan, 2012), as shown in equation (2): 

                        Ŷ = 𝑉𝑉 + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋3 + 𝑇𝑇                                         (2) 
where: 
Ŷ = predicted value of response variable (Cyanobacteria blooms) 
a = the intercept 
X1 = first explanatory variable (water temperature)  
X2 = second explanatory variable (phosphorus) 
X3 = third explanatory variable (nitrogen) 
u = the regression residual. 
 
This equation calculates the line of best-fit for the observed data by minimizing the sum 
of the squares of the vertical deviations from each data point to that line of best-fit (Ray, 
2019). This specific kind of analysis, known as Ordinary Least Squares (OLS) was used 
to perform the multiple regression analysis. We also performed a second analysis using 
Geographically Weighted Regression (GWR). If the relationship between the response 
and explanatory variables is nonstationary, GWR will most likely result in a better model 
than OLS regression. GWR also results in a spatial visualization of our results, which is 
useful since the output of the OLS regression is solely statistical. 
 
Objective 3: Apply the model to determine whether a correlating relationship is 
present between the observed variables. 

After completing the previous objective, we had a model for processing our data 
and the means for performing both an OLS regression and a Geographically Weighted 
Regression. 
 
 OLS regression analysis identifies whether or not the predictors are meaningful 
additions to the model. OLS calculates a coefficient for each variable, and each variable 
has a probability associated with it. This probability, known as p-value, is a number 
between 0 and 1. Examining p-value helps draw conclusions in relation to the null 
hypothesis, which states that there is no relation between the variables being studied. 
The opposite of this is the alternative hypothesis, which states that the explanatory 
variable had a significant effect on the response variable. Any variable with a p-value 
below 0.05 is statistically significant. This means that there is less than a 5% probability 
that the null hypothesis is correct. If this is the case, then we can reject the null 
hypothesis and accept the alternative hypothesis (Mcleod, 2019). The analysis of the p-
values of each explanatory variable can be used to determine whether or not a 



 

 
 

Page 13 - Establishing Potential Algal Bloom Triggers in Lake Erie using Spatial and Regression 
Analysis 

statistically significant relationship exists between it and the response variable. If not, 
we can hypothesize as to why this discrepancy may have occurred and then adjust the 
model if necessary. The output of the regression also indicates whether or not the 
observed relationships likely vary over space. In this case, a geographically weighted 
regression would be performed to see if it has any impact on the p-values of the 
explanatory variables. 
 
 Unlike OLS, the output of a GWR provides a thematic visualization of the 
coefficients produced from the analysis. The coefficients produced from this analysis 
would allow us to visualize how each explanatory variable affected the response 
variable and how that relationship varied over space. 
 
Objective 4: Evaluate the Strengths and Weaknesses of the model. 
 OLS automatically calculated a series of statistical checks in order to determine 
whether or not a regression model was properly specified and trustworthy. We 
examined these checks to confirm whether or not we created a reliable model. 
 
1. Are the explanatory variables helping the model? 

OLS calculates a coefficient probability (p-value) for each variable. Any value 
less than 0.05 was considered statistically significant (Mcleod, 2019). A Koenker test is 
also performed to determine if there is a nonstationary relationship in the data. If so, a 
GWR should be applied. 

 
2. Do the relationships have positive or inverse correlation? 

Examine the signs in front of the variable coefficients (positive or negative) 
 
3. Is the model biased? 

If the Jarque-Bera statistic, which determines whether or not residuals were 
normally distributed, are statistically significant, then the model is biased and 
considered untrustworthy. A biased model could potentially indicate that there are key 
explanatory variables missing from the model, or that not enough data is present. 

 
4. Do we have all key explanatory variables? 

The spatial autocorrelation tool is run to determine whether or not there is 
statistically significant spatial autocorrelation (clusters in the residuals). If clustering 
occurs, it is a symptom of misspecification, and misspecification indicates that key 
explanatory variables are missing. 

 
5. How well are we explaining the response variable? 
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Adjusted R-Squared and Akaike's Information Criterion (AIC) was used to 
compare model performance. AIC is a relative value that only matters in comparison to 
other models with the same response variable. If changing a variable decreased AIC, it 
was considered a stronger model (Akaike, H. 1998). R2 was used to see how much of 
the response variable was being explained by the response variable. R2  is an indicator 
of the amount of variance explained by our model (Seber & Lee, 2012).  A R2  value like 
0.2 means the model only accounts for 20% of the response variable variance. That 
value may seem low, but that information is still useful. It tells us that there are other 
sources of variance that are unaccounted for, which is likely to happen when examining 
a problem as complex as algal blooms. Finally there are residuals, which are the 
difference between the predicted values and the actual values. They can be thought of 
as an error margin. The sum of all residuals will be averaged, and defined as a 
percentage to define this margin. A margin of roughly 5% average residual error will be 
considered a model containing significant relationships, as a confidence level of 95% is 
widely used (Vijalapuram, 2019). 

6. Research Findings 
In our research we decided to use multiple regression models, each with different 

explanatory variables and temporal resolutions, in order to determine which yielded the 
most desirable p-values and Adjusted R-Squared. The first regression used the 
explanatory variables phosphorus, nitrogen, and water surface temperature for the 
years 2016, 2017 and 2018. The results are provided in Table 2. 
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Table 2: Regression results from using phosphorus, nitrogen, and water surface 
temperature as variables for the years 2016, 2017 and 2018 

Variable P-value Adjusted R-
Squared 

Average Residual 
Error 

Total Phosphorus (µg P/L) 0.003011033* 0.137594032 12.7% 

Particulate Organic Nitrogen 
(mg/L) 

0.00153796* 

CTD Temperature (°C) 0.726741148 

 
 

As shown in table 2, the first regression ended up having a relatively low 
Adjusted R-Squared at about 0.13. Adjusted R-Squared is more reliable than regular R-
squared because it has adjusted the statistic based on the number of explanatory 
variables in the model. More importantly, the p-value for temperature was well above 
the allowable threshold of 0.05. In order to account for this, we removed temperature 
and ran a second model with only phosphorus and nitrogen as the explanatory 
variables. 
 
Table 3: Regression results from using Phosphorus and nitrogen as variables for the 
years 2016, 2017 and 2018 

Variable P-value Adjusted R-
Squared 

Average Residual 
Error 

Total Phosphorus (µg P/L) 0.000402975* 0.142848688 
 

12.7% 

Particulate Organic Nitrogen 
(mg/L) 

0.002427994* 

 
As shown in table 3, all the included variables now have acceptable p-values, but 

the Adjusted R-Squared is still low. An Adjusted R-Squared value of 0.14 means that 
we are only explaining about 14% of the response variable with our explanatory 
variables. This shows that we are at least explaining some of the variance with our 
model, though 14% is still a relatively low percent. We wanted to see if we could 
improve the R-Squared value while still maintaining significant p-values, so we decided 
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to run three different models. There would be one model for each year of data: 2016, 
2017, and 2018. 
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Table 4: Regression results separated by year using phosphorus and nitrogen as 
variables for the years 2016, 2017 and 2018 

2016 - Phosphorus and Nitrogen 

Variable P-value Adjusted R-
Squared 

Average Residual 
Error 

Total Phosphorus (µg P/L) 0.000402975* 0.675972842 6.1% 

Particulate Organic Nitrogen 
(mg/L) 

0.002427994* 

Regression Equation: 
Cyanobacteria(cells/ml) = 8307(Phosphorus mg/L) + 1660394(Nitrogen µg P/L) - 372147 

2017 - Phosphorus and Nitrogen 

Variable P-value Adjusted R-
Squared 

Average Residual 
Error 

Total Phosphorus (µg P/L) 0.675108567 0.016939978 18.9% 

Particulate Organic Nitrogen 
(mg/L) 

0.112435445 

Regression Equation: 
Cyanobacteria(cells/ml) = 1628(Phosphorus mg/L) + 412094(Nitrogen µg P/L) + 1406113 

2018 - Phosphorus and Nitrogen 

Variable P-value Adjusted R-
Squared 

Average Residual 
Error 

Total Phosphorus (µg P/L) 0.589785256 0.424457641 2.6% 

Particulate Organic Nitrogen 
(mg/L) 

1.45216E-05 

Regression Equation: 
Cyanobacteria(cells/ml) = -525(Phosphorus mg/L) + 1509188(Nitrogen µg P/L) + 55180 
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 As shown in table 4, for each of the three years that we have data for, only 2016 
has produced a high Adjusted R-Squared value with acceptably low p-values. 
 

 
Figure 6: Current displacement of Cyanobacteria bloom in 2017, and wind 
displacement of Cyanobacteria bloom in 2018. Legend signifies Cyanobacteria density 
in cells/ml. 
 
 We hypothesize that 2016 has produced the most statistically significant results 
due to having the most stable bloom shapes. Figure 6 reveals bloom shapes for 2017 
and 2018 to be stretched and displaced due to wind and current, thus making 
Cyanobacteria values observed for 2017 and 2018 spatially displaced, therefore less 
valid. Future models can be improved to account for this by using larger buffer areas to 
capture displaced blooms, by using data with a higher temporal resolution to capture 
blooms before they become displaced, by using algorithms to identify a displaced bloom 
by analyzing it’ s shape, and by factoring in a weighting system to account for wind, 
wind direction, and current of the local area. Additionally, average wind speeds we 
calculated from our sampling stations for 2016 were lower than that of 2017, and 2018, 
adding further weight to this hypothesis. 
 

Therefore, we will use the 2016 model to conduct further statistical analysis. 
When this model is used as the input in RStudio and the ArcGIS OLS regression tool, a 
number of different statistics are produced as shown in table 5. Figure 7 and 8 both 
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visualize the distribution of the observed variables and their residuals. Figure 7 shown 
below uses the regression equation produced by the 2016 model as seen in Table 4, to 
plot a pink regression plane which symbolizes predicted results. Actual results are 
plotted by points of varying colour signifying the intensity of Cyanobacteria density as 
described by the attached legend. The distance between the points and the plane 
signifies the residuals. 

 
 

 

 
 

Figure 7: Graph visualizing actual results versus predicted results of the 2016 
regression. 
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Table 5: OLS Regression Summary and Diagnostics for 2016 with phosphorus and 
nitrogen 

Summary of OLS Results 

Variable Coefficient 
[a] 

StdError t-
Statistic 

Probabilit
y [b] 

Robust
_SE 

Robust
_t 

Robust_P
r [b] 

VIF 
[c] 

PHOSPH
ORUS 

8307.3058
87 

2151.50
7799 

3.861155 0.000403* 3032.0
16803 

2.7398
61 

0.009140* 2.06
7325 

NITROGE
N 

1660394.2
75455 

512912.
327570 

3.237189 0.002428* 811875
.45919
8 

2.0451
34 

0.047460* 2.06
7325 

OLS Diagnostics 

Input Features: 2016_Model Dependent Variable: CYANOBA 
CTERIA 

Number of 
Observations: 

43 Akaike's Information 
Criterion (AICc) [d]: 

1276.195652 

Multiple R-Squared [d]: 0.691403 Adjusted R-Squared [d]: 0.675973 

Joint F-Statistic [e]: 44.809382 Prob(>F), (2,40) degrees of 
freedom: 

0.000000* 

Joint Wald Statistic [e]: 77.302484 Prob(>chi-squared), (2) 
degrees of freedom: 

0.000000* 

Koenker (BP) Statistic 
[f]: 

4.246405 Prob(>chi-squared), (2) 
degrees of freedom: 

0.119648 

Jarque-Bera Statistic 
[g]: 

70.200695 Prob(>chi-squared), (2) 
degrees of freedom: 

0.000000* 
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Figure 8: Histogram of Standardized residuals  
 
 There are several statistics in Table 5 that can be used to analyze the strengths 
and weaknesses of the model we’ve produced. One of these statistics is the Koenker 
statistic. The asterisk next to this value indicates that there is most likely a nonstationary 
relationship in the model, and performing a Geographically Weighted Regression 
(GWR) may improve the results of the model. Therefore, we will run the same model, 
but this time with GWR.  
 
Table 6: Geographically Weighted Regression Results Summary 

 Weighted Regression 

Neighbours 37 

Residual Squares 10672371379054.516 

Effective Number 8.1908740762399255 

Sigma 553711.9618959678 

AICc 1269.2377129682613 

R2 0.79170586783759678 

R2 Adjusted 74867643703602826 



 

 
 

Page 22 - Establishing Potential Algal Bloom Triggers in Lake Erie using Spatial and Regression 
Analysis 

 
 

 
Figure 9: Nitrogen Significance in Geographically Weighted Regression 
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Figure 10: Phosphorus Significance in Geographically Weighted Regression 
 

The results of the GWR in Table 6 show a significant improvement to the results 
of the model. The Adjusted R-Squared value has increased from about 0.678 to about 
0.748, meaning the explanatory variables can now explain about 7% more of the 
response variable. The AIC value has also decreased from the 1276 value shown in 
Table 5 to a value of 1269 in Figure 9, proving that the new GWR model does a better 
job of explaining the response variable than the regular OLS model. Figure 10 shows a 
high weighting of Phosphorus at Maumee Bay, confirming our hypothesis that this was 
a problem area due to nutrient runoff. From all this we can conclude that a nonstationary 
relationship exists between the response variable and the explanatory variables. 
 
 Finally, the strengths and weaknesses of the model will be examined by 
answering the questions that were proposed in the fourth research approach. 
 
1. Are the explanatory variables helping the model? 

This relates to the p-values and Koenker statistic from Table 5. The p-values for 
each variable are below 0.05, so each variable is statistically significant to the model. 
The Koenker statistic is also statistically significant, but that has already been 
accounted for with the GWR. 

 
2. Are the relationships what we expected? 

As shown in Table 5, there is no negative sign in front of the coefficient for both 
phosphorus and nitrogen. This indicates they both have a positive relationship with the 
response variable, which is also observed in Figure 7. As phosphorus and nitrogen 
levels increase, so does the density of algal blooms. This is the relationship we 
expected. 

 
3. Is the model biased? 

Table 5 shows that our model has a statistically significant Jarque-Bera statistic, 
meaning the residuals are not normally distributed with a mean of zero.. This means the 
model is biased, and could be caused by a missing key explanatory variable or the 
modelling of a nonlinear relationship. 

 
4. Do we have all key explanatory variables? 

The results of the spatial autocorrelation show that no clustering occurs in the 
residuals. This should indicate that there are no missing variables, however the fact 
remains that the Jarque-Bera statistic is significant. Since the model currently only 
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examines two explanatory variables for an issue as complicated as algal blooms, it can 
be assumed that we are most likely missing key explanatory variables. 

 
5. How well are we explaining the response variable? 

This relates to both the adjusted R-Squared and the AIC. Through the results 
shown in Table 6 from the GWR we can confirm that these values indicate a model 
containing significant relationships. It passes our minimum R-Squared threshold of 0.5, 
and is roughly at our set forth 5% error margin for average residuals. 
 

This research conducted can have many benefits. These blooms impact several 
industries such as tourism, fishing, and recreation (Watson et al, 2016). Government 
agencies monitor blooms to issue safety warnings for activities involving water bodies 
that have been impacted by blooms (World Health Organization, 2003). Having a 
predictive model that can show relationships between nutrients, climate change, and 
Cyanobacterial blooms can make way for potential policy to further constrain the inputs 
causing Cyanobacteria blooms. From an economic standpoint, this would additionally 
help by decreasing the impact of Cyanobacterial blooms on revenue loss through 
tourism, public health risk, and ecosystem disruption (Watson et al., 2016). 

 

7. Conclusion 
 The purpose of this analysis was to investigate significant relationships between 
the density of algal blooms in relation to phosphorus, nitrogen and water surface 
temperature. Knowing what factors contribute significantly to the growth of algal blooms 
can help develop policies such as best management practices to limit runoff, and safety 
measures regarding allowable nutrient thresholds to reduce the growth of blooms, and 
thus the harmful impacts that they may have on the environment. Further literature 
review revealed that some of the variables that contribute most to algal blooms growth 
include phosphorus, nitrogen and water temperature.  Multiple different regression 
models were then run against the available data in order to find reliable results. Based 
on our results, water temperature did not have a statistically significant relationship with 
the response variable. It was concluded that both phosphorus and nitrogen have a 
positive linear relationship with Cyanobacteria density. Once the parameters for the final 
regression model were decided upon, those same parameters were used in a 
geographically weighted regression to determine whether or not the relationships varied 
over space. The relationship is also nonstationary, and more heavily weighted at 
Maumee Bay, making the Maumee River inlet suspect of being the most problematic 
run-off source. 
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 It is important to remember that the results can only be as accurate as the raw 
data. Factors such as wind and cloud cover restricted the amount of usable 
cyanobacteria data. Factors such as the number of sample points and temporal 
resolution affected the amount of usable nutrient and water temperature data. This 
study could only use the temporal overlap between the response and explanatory 
variables, which resulted in a relatively small number of data points compared to what 
was originally planned. Fewer data points means a smaller data set, and a smaller data 
set means the data is less representative of the actual scope of information that is 
present in the real world. 
 

Future improvements to this model would be to factor in bloom displacement by 
incorporating local wind measurements, current measurements, and analysis of bloom 
shape. Analyzing the problem using a greater temporal resolution, and tracking the 
inputs of nitrogen and phosphorus at their source may provide greater cognizance into 
the relationships at play. The role of water temperature in this model is still 
underdeveloped and can be further analyzed by taking into account environmental 
phenomena like aquatic seasonal turnover, and climate change. 
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