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Abstract  
Mangroves are vital for preventing shoreline erosion, flooding, and carbon storage. However, land 
development for rice and aquaculture production in Southern Viet Nam is causing growing concerns for 
mangrove ecosystems. The aim of this study is to classify changes in mangrove cover by change type, and 
perform a logistic regression using various potential drivers of change to determine their significance. 
Spatial data collected from the Mangrove Forest Watch and GIS applications were used to create a 
classification map presenting how mangrove changes from 1996 to 2016. With the support of previous 
literature, patterns in mangrove cover changes were identified and the classifications are shown to be 
spatially correlated. We used GIS and RStudio to perform a logistic regression and spatially analyze the 
relationship of mangrove loss with potential drivers. Based on the Akaike Information Criterion, p-values, 
and an accuracy assessment, we determined the most significant drivers of mangrove loss. Using the 
regression coefficients, the probability of mangrove loss was determined with each model. Results 
showed that agriculture is the main driver of mangrove loss in the MDR. High population and road density 
were somewhat significant but inconclusive. Meanwhile, protected areas, aquaculture, and waterways 
were not found to be significant drivers. Aquaculture was expected to be important but showed 
insignificance likely due to the increase in mangrove-shrimp farms. The findings also indicate that different 
areas in the MDR have different drivers. These results are only applicable to the MDR and further analysis 
on a provincial scale is recommended.  
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1. Introduction  

1.1. Problem Context 

Viet Nam has become one of the most rapidly developing economies in Southeast Asia (The World Bank, 

2020). This growth can be attributed to the abundance of natural resources provided by the Mekong river 

(Liu et al., 2020). The Mekong river flows through Southeast Asia, spanning six countries and discharges 

via smaller rivers in the Mekong Delta Region (MDR) in Viet Nam. The Mekong Delta, one of the two deltas 

of Viet Nam, flows into the Pacific Ocean with a coastline dominated by mangroves and estuaries. 

Mangroves provide the region with freshwater, creating an ideal environment for agriculture and 

aquaculture development (The Ocean Portal Team, 2018)Φ ¢Ƙƛǎ ǊŜƎƛƻƴ ǇǊƻǾƛŘŜǎ ррΦф҈ ƻŦ ±ƛŜǘ bŀƳΩǎ ǊƛŎŜ 

ǇǊƻŘǳŎǘƛƻƴ ŀƴŘ тлΦнт҈ ƻŦ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ŀǉǳŀŎǳƭǘǳǊŜ ǇǊƻŘǳŎǘƛƻƴ ŀŎŎƻǊŘƛƴƎ ǘƻ нлмф Řŀǘŀ όDŜƴŜǊŀƭ {ǘŀǘƛǎǘƛŎǎ 

Office of Viet Nam, 2020). Due to this economic potential, there has been an abundance of development, 

particularly of the MDR coastal provinces, where mangroves reside (Veettil et al., 2019). 

 

Mangroves provide food and habitat for many species of insects, fish, birds, and monkeys. Mangroves 

help to protect freshwater from salinity intrusion and reduce erosion by helping to build up sand and silt 

with their complex root systems. They also help eliminate carbon from the atmosphere, where one acre 

of mangroves can store up to 1,450 pounds of carbon per year (The Ocean Portal Team, 2018). Due to the 

nutrient rich soil that mangroves create, they are able to store approximately 35 times more carbon than 

upland forests (Donato et al., 2011). Therefore, protecting and restoring mangrove ecosystems globally is 

vital to decreasing the amount of carbon in the atmosphere. In recognizing the importance of carbon 

storage, mangrove restoration projects have begun to be put into place in previously developed areas in 

the provinces of Ben Tre and Ca Mau (Dung et al., 2016). With an increasing emphasis being put on 

mangroves, drivers leading to their change have started to be studied more widely.  

 

Previous studies have focused on land use drivers and its impacts on hydrological changes in the MDR. 

These findings suggest that land change causes increased flood risk and salinity intrusion (Liu et al., 2020). 

More recently, Adame et al. (2021) predicts that the highest mangrove deforestation emissions are likely 

to come from southern Asia, mostly due to agriculture and aquaculture land conversion. Liu et al. (2020) 

studied land cover dynamics in relation to human activity and economic development in the MDR. The 

results of their study found forest fragmentation caused by agriculture development led to mangrove 

cover loss between 1995-2015 (Lui et al., 2020). These mangrove changes are expected to be spatially 
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dependent on close proximity to developed areas. Identifying potential causes of mangrove change can 

aid in land use management and suggest where policy interventions may be needed (Loc et al., 2021; Liu 

et al., 2020). The use of geographical information systems (GIS) is necessary to identify these spatial 

patterns and the proximity to potential drivers of changes. To assess the impact of those drivers, the 

distance to these variables as a function of loss was determined using logistic regression.  

 

1.2. Research Purpose 

The purpose of this research is to understand how the mangrove cover is changing in the MDR and to 

identify the main drivers of these changes through the use of GIS and logistic regression analysis.  

 

1.3. Study Area 

Our study area is the MDR, located in Southern Viet Nam. The MDR consists of twelve provinces and 

covers an area of 40,576.6 km2 (Figure 1). The region is largely known for its extensive cover of mangroves, 

stretching 3260 km across the coastline (Veettil et al., 2019). In comparison to mangroves in the northern 

delta and the central coast of Viet Nam, the MDR provides ideal conditions for mangroves to thrive. The 

conditions include low lying topography, rich sediments carried by the Mekong river, a warmer climate, 

and less severe weather (Veettil et al., 2019). On the contrary, the low lying topography also presents 

concerns to the region such as rising sea levels and salinity intrusion. Due to these increasing concerns, 

studying mangrove change can assist the MDR not only ecologically but also economically.  
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Figure 1: Location of our study area with labels of each province in the Mekong Delta Region.  

 
In recent years, Viet Nam has seen an economic boom from industrialization and a large part of this has 

required expansion of urban development. Due to the availability of our mangrove dataset, we assessed 

mangrove cover over a period of twenty years from 1996 to 2016. This research mainly focuses on the 

coastal provinces which are Kien Giang, Ca Mau, Bac Lieu, Soc Trang, Tra Vinh, Ben Tre, and Tien Giang 

(Cosslett, 2013).  

 

 

2. Research Approach 

Research Objectives 

1. Identify overall change and patterns in the changes of mangrove cover in the MDR between 1996-

2007, and 2007-2016. 

2. Identify potential drivers of mangrove cover change in the MDR. 
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3. Use logistic regression analysis to determine the significance of each potential driver and to create 

a probability model of mangrove loss in the region.  

4. Assess the accuracy of the probability model by comparing the predicted probabilities of loss to 

the real loss. 

 

2.1. Objective 1: Mangrove Change Pattern  

Our project coordinate system is WGS 84/UTM zone 48N, which fits the Mekong Delta region with minimal 

distortion. The overall change between 1996, 2007, and 2016 was calculated by subtracting the mangrove 

rasters of each respective year from each other to show the amount of forest loss or gain for each cell. In 

addition to determining change, patterns in mangrove cover change were classified into seven categories 

(Table 1). In doing so, we recognize that change in forest cover each year may be due to error in the 

mangrove dataset and not due to actual mangrove loss or gain. The original dataset is at a 30 m resolution, 

per the recommendations of Bunting et al (2018), was resampled to 100 m resolution using nearest 

neighbour resampling. This resampling method changed the resolution while leaving it binary to help 

eliminate noise within the dataset. By identifying overall loss of mangrove cover, we can analyze how the 

proximity of the defined variables could be impacting these changes. 
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Table 1: Seven mangrove change categories generated from mangrove cover raster datasets from 1996-2016.  

Mangrove Classes Years of Mangrove present Raster Calculation Formula 

Constant cover 
Present during all years 1996, 
2007 and 2016 

"GMW1996" = 1 AND "GMW2007" = 1 AND 
άDa²нлмсϦ Ґ м 

Early loss 
Present in 1996, not present in 
2007 and 2016 

"GMW1996"" = 1 AND "GMW2007" = 0 AND 

άDa²нлмсϦ Ґ л 

Late loss 
Present in 1996 and 2007, not 
present in 2016 

"GMW1996"" = 1 AND "GMW2007" = 1 AND 
άDa²нлмсϦ Ґ л 

Intermediate cover 
Present in 2007, not present in 
1996 and 2016  

"GMW1996" = 0 AND "GMW2007" = 1 AND 
άDa²нлмсϦ Ґ л 

Early gain 
Not present in 1996, present in 
2007 and 2016 

"GMW1996" = 0 AND "GMW2007" = 1 AND 
άDa²нлмсϦ Ґ м 

Late gain 
Not present in 1996 and 2007, 
present in 2016 

"GMW1996"" = 0 AND "GMW2007" = 0 AND 
άDa²нлмсϦ Ґ м 

Regrowth 
Not present in 2007, present in 
1996, 2016 

"GMW1996" = 1 AND "GMW2007" = 0 AND 
άDa²нлмсϦ Ґ м 

 

 

2.2. Objective 2: Potential Drivers of Changes 

Although natural drivers such as salinity level and elevation play a role in mangrove loss, these drivers do 

not vary significantly throughout the area of mangrove cover (Tuan et al., 2007; Minderhoud et al., 2019). 

Therefore, they are unlikely to affect the results and were not included in our model. Moreover, with the 

rapid economic development in the MDR, we are more interested in anthropogenic drivers. Our model 

was based on the proximity to each of the potential drivers (Figure 2). Table 2 presents the potential 

drivers that were used for the regression model in Objective 3, based on the availability of spatial data 

and recent studies. 
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Table 2: Required data for the potential drivers, categorized by data type, resolution, year, and data source. All of 
the data are rasterized and resampled to fit our chosen resolution of 100 m.  

Required data Data type Resolution  Year Source 

Roads Networks 
Vector 
(Line) 

30 m 2018 
Global Roads Inventory 
Project (GRIP) 

Population density Raster 100 m  2016 
WorldPop - University of 
Southampton 

Agriculture Lands Raster 10 m 2017 
Advanced Land 
Observation Satellite 
(ALOS-2) 

Aquaculture Ponds Raster 30 m 2014 Clark University- ClarkLabs 

Protected Areas 
Vector 

(Polygon) 
N/A 2016 

Open Development 
Vietnam 

Waterways (canals, 
rivers, streams) 

Vector 
(Line) 

N/A 2021 Open Street Map 

 

 

Road Networks 

Road networks increase the accessibility of areas that would otherwise be cut off from development or 

transport of goods. For this reason, the proximity to areas of high road density was a variable in the 

regression model (FAO, 1986; Liu et al., 2020). Road density was calculated using a 1000 m radius, and 

any areas with density above the average density of the dataset were considered as high road density. 

 

Population Density 

Population is a factor that leads to increased development of land use over time (Liu et al., 2020). Areas 

of high population density are likely to expand and develop nearby land to support population growth, 

which create stress on the local ecosystem. For our model, high population density areas were considered 

as any area with a population density higher than the average population density of Viet Nam in 2016, 

which is 302 people per km2 (Worldometers.info, 2021).  

 

Agriculture and Aquaculture  

With an increasing population, the demand for agriculture and aquaculture farms continues to grow. 

Previous research has suggested that agricultural development and runoff have been shown to lead to 
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mangrove loss (Veettil et al., 2019). In addition to increased unsustainable rice and shrimp farming, the 

ongoing development requires the need for mangrove removal (Friess et al., 2016; Quoc et al., 2013). The 

economic dependence on aquaculture farming has been the primary cause of losing approximately 52.5% 

of mangrove in the province of Ben Tre between 1998 and 2015 (Veettil et al., 2019). Thus, the distance 

to aquaculture and agriculture farms are most likely to affect mangrove cover. 

 

Protected Areas 

Recognized worldwide heritage sites are used as a variable to assess how proximity to conserved land 

affects the mangrove loss. Protected areas can help in preserving the intact mangrove cover from being 

cut down. In particular, Ca Mau peninsula is one of the core zones of Mui Ca Mau Biosphere Reserve by 

UNESCO (RSIS, 2012). In this case, the government of Viet Nam only has investment plans in restoration 

but missing a management plan which potentially leads to illegal logging, and more agriculture and 

aquaculture development (RSIS, 2012). 

 

Waterways 

Aquaculture farms require consistent water quality, such as pH or salinity (FAO, 1986), and the flow of 

rivers can affect how and where these farms are being built. The MDR is a low lying region with complex 

rivers, canals, and stream networks, hence they can provide additional accessibility to dense mangrove 

forest areas.  
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Figure 2: Detailed workflow to obtain the proximity raster for all potential drivers.  
 

2.3. Objective 3: Logistic Regression Analysis 

After we identified drivers of mangrove cover change, a logistic regression was performed to evaluate the 

relationship between each potential driver and mangrove loss.  

 

Sampling 

To avoid overrepresentation of mangrove loss in Ca Mau province and underrepresentation in provinces 

on the east coast, we used a stratified sampling method. The MDR was stratified into three subgroups: 

Kien Giang province, Ca Mau province, and the remaining provinces on the east coast (Figure 3). Then 

both the loss points and no-loss points were randomly sampled from each subgroup. We considered the 

loss area to be mangrove cover that was present in 1996 but was not present in 2016. We considered 
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areas that had constant mangrove cover or mangrove gain over the study period as no-loss. The sample 

points of each subgroup were proportional to the sample size of the subgroup, for a total of 100 loss 

points (Table 3). While, the no-loss sample points were the same size as the loss sample. With this method 

of sampling, we could ensure that the sample sizes are representative of each subgroup.  

 

About 84% of mangrove loss in the MDR is in the Ca Mau province, and within mangrove loss of Ca Mau 

there is roughly 32% of early mangrove loss (Figure 11). Prior to the establishment of Mui Ca Mau National 

Park in 2003, this area suffered from war chemical residuals, shrimp farm conversion, and timber 

exploitation (Tran & Fisher, 2017). Since the drivers of change in this protected area were previously 

identified they were not expected to affect other mangrove areas. For these reasons, we removed the 

32% early loss of Ca Mau before sampling for loss points.  

 

Table 3: Sampling table of each subgroup with the total loss points. The sampled points of loss are roughly 2% of all 
loss, for a total of 100 points. The no-loss layer sampling size is the same as the mangrove loss sample size. 

 Total loss points Loss Sample No-loss Sample 

Ca Mau 2601 78 78 

Kien Giang 453 14 14 

Remaining 276 8 8 

Total (MDR) 3330 100 100 
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Figure 3: The MDR is divided into three subgroups: (A) Kien Giang, (B) Ca Mau, and (C) Remaining provinces. Points 
are selected through the stratified sampling method after removing a large portion of loss points 

 

Logistic Regression Model 

Logistic regression was applicable for our data because our response variable is binary (either loss or not 

loss). The results of the regression were used to determine probability of loss. From objective 2, we 

identified the six explanatory variables that can impact mangrove cover change in the MDR, and calculated 

the proximity of each. We then put our sampled points through RStudio to perform the regression (Figure 

4). After the logistic regression, the beta coefficients for each driver were input into the raster calculator 

to generate log odds rasters. The log odds were then used to create a probability raster for each model 

through the raster calculator. We chose the model best fit for our data based on the p-value of the drivers 

(p< 0.01), Akaike Information Criterion (AIC) (Akaike, 1973) and an accuracy assessment. 
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Figure 4: Generalized workflow of logistic regression models in objective 3.  
 

2.4. Objective 4: Accuracy Assessment 

To assess the accuracy of our three models, the probability of mangrove loss was compared with the 

sampled points and assessment points based on the result from objective 3. The number of assessment 

points were the remaining points of the mangrove layer that were not sampled, including both loss points 
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and no loss points. By using the remaining unsampled points, the accuracy assessment was independent 

from the sample data. There were a total of 80,008 points used for our accuracy assessment.  

 

3. Research Findings 

Mangrove Cover Change 

Based on our cover classifications in Table 1, several areas show a certain degree of spatial correlation, 

presented in Figure 5. Areas of early loss and late loss tend to occur near each other as highlighted in 

boxes A, B, and C. The same is true for areas of gain, where early gain and late gain tend to occur near 

each other, most prominently highlighted on the northern coasts in box D. These patterns suggest that 

loss and gain were not random, and were each affected by certain drivers. 

 
Figure 5: Prominent areas of mangrove change in four areas along the coasts of Kien Giang (A & B), Ca Mau (C) and 
Ben Tre (D). 

 

According to Figure 5, the area overall has a lot more mangrove loss than gain. Areas of gain equal 

35,200,000 m2, with over 80% of total gain being early gain. Areas of loss total 143,550,000 m2, and 

approximately 58% of that loss is early loss. The most significant loss, which includes early loss and late 

loss, is present on the coast of Kien Giang (Figure 5-A and B), in the peninsula area (Figure 5-C), and on 

the coast of Ben Tre (Figure 5-D). Ben Tre shows more late loss compared to other highlighted areas.  
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Drivers of Changes 

In both model 1 and model 3, agriculture was shown to be statistically significant (p<0.01) with a p-value 

of 0.004 and p-value of 0.005 respectively, regardless of the other variables included in model 3. Whereas, 

high population density (p=0.070), waterways (p=0.133) and protected areas (p=0.136) were statistically 

insignificant in model 3. For model 2, we considered both high population density and high road density, 

as well as an interaction variable because of their high spatial correlation, with a p-value of 0.043. Model 

2 demonstrated a positive relationship between high population density, high road density, and mangrove 

loss, but was not statistically significant (p>0.01). Visualized in Figure 6, mangrove loss increases as 

distance to aquaculture ponds increases. However, the aquaculture variable showed no significant impact 

on mangrove loss, with a p-value of 0.933.  

Figure 6: Data variance of both types of mangrove cover is represented with relation to the aquaculture ponds 
variable. Aquaculture demonstrates an opposite pattern to mangrove loss than agriculture. 
 

We used the AIC scores to assess the fit of all three models; however the difference in AIC scores between 

the models was minimal (Table 4). Despite model 3 having the lowest AIC score, the p-values were not 

statistically significant.  

 

Table 4: AIC score of each model and its chosen explanatory variables. Variable combinations chosen based on z-
scores of each individual variable. AIC value suggests model 3 to be the best fit for our data. 

Model Variables  AIC 

1 Agriculture 271.7160 
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Model Variables  AIC 

2 High population and roads density 270.7981 

3 Agriculture, High Population Density, Waterways, Protected areas 269.6499 

 
For the accuracy assessment, the predicted probabilities were compared to the real loss. We considered 

predicted values equal to or above 0.5 as a prediction of loss, and values below 0.5 are a prediction of not 

loss. The loss prediction of model 1 was the most precise of the three models, with most of the loss points 

above the threshold of 0.5 (Figure 7). Model 3 was the least precise of the three, with approximately even 

distribution of probability values for loss and no-loss. Probability raster maps were created to visually 

compare predicted loss with real loss (Figure 9 to 11). 

 

Figure 7: Probability from remaining unsampled points from no-loss raster compared to sampled points from loss 
raster.  
 

4. Discussion  

Patterns in mangrove change and its drivers could be explained by policy development and growing 

patterns in response to food demand. Early loss is the most prominent in the southern tip of Ca Mau, in 

the area of Dat Mui. This area also contains the Mui Ca Mau National Park. From the 1990s to the early 
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2000s, prior to its protection, there was a heavy push of shrimp monoculture. Following its protection, 

there was no longer loss seen at the southern tip of the Mekong Delta.  

 

Early gain was most prominent along the western coast of Ca Mau (Figure 8). In the mid 1990s and into 

the 2000s, restoration projects began surrounding the Mui Ca Mau National Park. In addition, Ca Mau 

shows the most noticeable regrowth of mangrove cover (not present in 2007, present in 1996, 2016), near 

the Mui Ca Mau National Park and the eastern coast of Ca Mau (Figure 8). These regrowth patterns can 

be attributed to restoration projects. Although there is far more loss than gain, these results show that 

loss decreased by 15% over the latter half of the study period. With proper policy and management, the 

decreases in mangrove loss could continue well into the future, providing hope for the future of a healthy 

mangrove ecosystem in the MDR. However, since our analysis only focuses on mangrove loss, further 

research on main drivers leading to mangrove gain is necessary.  

Figure 8: Different classification of mangrove change as indicated in Table 1 during 1996-2016 in the peninsula in 
Ca Mau.  
 

The AIC scores and the p-values determined from the logistic regression contradicted each other. Model 

1 showed to have statistically significant p-values despite having a higher AIC score, and vice versa for 
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model 3. To determine which model is best fit for these results, we also needed to consider the accuracy 

of each model. In addition to the significant p-values, model 1 accuracy assessment showed the best result 

(Figure 7). This suggests that model 1 appears to be the best fit for our data and that agriculture is the 

main driver of mangrove loss in the MDR.  

 

Predicted loss from model 1 shown in Figure 10 are mostly in agreement with the real loss of areas A and 

B in Figure 9. This suggests that agriculture is a driver of mangrove loss in these provinces. Predictions of 

loss were concentrated on the east coast of the peninsula (Box C of Figure 10), whereas the real loss in 

that area was sporadic. This could suggest that agriculture is not a driver of mangrove loss in the Ca Mau 

peninsula. Predicted loss for model 3 contradicted the real loss shown in Figure 9, highlighted in Box B 

and box C from Figure 11. This further supports that model 3 is not the best fit for our data, contrary to 

its AIC score. 

 

Figure 9: Real loss between 1996-2016 in three areas Kien Giang (A), Ben Tre (B), and Ca Mau (C). 
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Figure 10: Predicted loss of model 1 (agriculture) in three areas: Kien Giang (A), Ben Tre (B) and Ca Mau (C). The 
map was threshold to only display areas that are considered loss by the model, having a probability equal to or 
above 0.5. 
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Figure 11: Predicted loss of model 3 (agriculture, high population density, waterways, protected areas in three 
areas: Kien Giang (A), Ben Tre (B) and Ca Mau (C). The map was threshold to only display areas that are considered 
loss by the model, having a probability equal to or above 0.5. 
 
These results could be explained by shifts in land cover change during the study time period. In the late 

2000s, the government increased the demand for rice production on the coast of Ca Mau (Van et al., 

2015). This shift in demand could explain the model showing proximity to agriculture being a main driver 

in mangrove loss. The logistic regression analysis also suggests that aquaculture is not related to mangrove 

loss in the MDR between 1996 and 2016. Following the push away from monoculture in 1992, there was 

an increase in mangrove-shrimp forests. With this method, mangrove canopy is not lost and shrimp 

farming occurs underneath (Van et al., 2015). Although it is important to recognize that shrimp farming 

has been found to impact mangrove forests (Tran ; Liu et al., 2020), our model can not detect this 

relationship. This could explain the lack of a visible relationship between aquaculture and mangrove loss 

in our model. 

 












