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Abstract  

Forest fires in Ontario are projected to increase in frequency by 50% within 
55 years. As the frequency increases, the serious risk already posed to human and 
environmental safety will only grow. This report aims to identify areas of Ontario 
that face the highest risk of wildfire outbreak. Here, we use Multi-Criteria Evaluation 
to create a model that identifies areas at risk of fire in Ontario. Our research uses 
vegetation health as the most important criterion, followed by mean temperature 
and precipitation. The combination of medium population densities and low 
precipitation leads to the highest risks of forest fires, which are in the north-west 
and south-eastern parts of the study area. These conditions are frequent during 
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April, when half the study area is under high risk of forest fires, whereas in August, 
the risk of forest fire is minimal. We found the lowest fire risks near Hudson Bay 
and are associated with low mean temperatures, low population densities, and high 
levels of precipitation. Our assessment can be used in decision-making at municipal 
and provincial levels to reduce the risks posed by forest fires to humans and 
important ecosystems, as well as help plan the distribution of resources dedicated 
to mitigate the risks.  

Problem Context 
Between 1959 and 1997, over 2 million hectares of North American forests 

burned due to wildfires. Unfortunately, forest fire vulnerability is expected to 
increase due to climate change (Splawinski et al., 2016). Wildfires can occur due to 
many natural causes such as lightning and human activity (Wotton et al., 2005). 
While controlled fires have proven to be beneficial to forest ecology, such as 
species that have evolved to live in forests prone to fire like the jack pine (Pinus 
banksiana), which require fire to release seeds within pinecones (Hutto 2008). In 
turn, forest fires also release years of carbon-storage which can increase 
atmospheric CO2 and increase the rate of climate change (Boby et al., 2010). Many 
species struggle to regenerate after disturbance, unable to escape the flames 
(Chuvieco Salinero, 2003), which put the ecological dynamics of Ontario at risk 
(Poley et al., 2013).  

Factors that affect the risk of wildfire are local vegetation (fuel source), 
temperature, human development, hydrology, and topography (Bryant and 
Westerling, 2014). Wildlife Urban Interface (WUI) are areas in which man-made 
structures are adjacent to vegetation (Pavegilo and Hardy, 2013). These areas are of 
special concern due to the human safety and economic risks (Thompson et al., 
2011). In addition, ignitability of building materials for houses are the main cause of 
initiating home-loss to fires (Ager et al., 2010). Fire initiation is considered a fire 
ignited and expected to turn into a wildfire, as a fire ignition does not necessarily 
result in a wildfire (Chuvieco Salinero, 2003). With the landscape, climate, and 
human development constantly changing, the areas at-risk of fire in Ontario 
requires constant updating leading to great uncertainty of which areas require fire-
preventative measures. 
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The identification of at-risk areas can provide information to the public on 
the potential impacts and can suggest new locations for fire services with access to 
at-risk areas to combat outbreak zones. The data can be used as a basis for 
decision making in management and government targeting towards environmental 
policy and protection of lands at risk.  

Utilizing Geographic Information Systems (GIS) is essential to conduct our 
project. GIS provides our team with tools to design and operate a spatial risk 
assessment which is not feasible without GIS (Korucu, 2012). Multi-criteria 
Evaluation (MCE) is a technique to compare conflicting variables and their varying 
influence in a risk assessment. An MCE is done by evaluating criteria or factors with 
varying states and then their influence on the objective to rank areas by a suitability 
score (Carver, 1991). Using GIS to perform an MCE will allow our team to 
manipulate and analyze spatial data and determine areas of fire risk in Ontario. 

Purpose of Research 
The purpose of this research is to identify areas of high and low fire initiation 

risks, assess the potential intensity and ecological costs of a fire, and to inform 
resource managers to reduce the risk of wildfires in Ontario. 

Research Objectives 
1. Identify factors and variables that affect the risk of wildfires, and collect relevant 

data 
2. Weight the factors identified in Objective 1, and integrate into a GIS model 
3. Examine factor relationships and determine the level of wildfire risk across 

Ontario 
4. Evaluate the areas of determined high risk and limitations of analysis 

Study Area 
Our study area as seen in Figure 1 is limited to the spatial extent of forestry 

data available through the Ontario Ministry of Natural Resources and Forestry 
(MNRF) and Natural Resources Canada (NRCan). Within this area, the objective is to 
determine spatially significant areas where wildfires have a higher risk of occurring. 
Areas of high risk will be determined by spatial analysis using criteria proven to 



 

4 
 

increase risk of forest fire.

 
Figure 1: Image of Ontario, Canada highlighting our study area. 

 

Research Approach 
Below is our case study flow chart depicting the process of executing objective 1-4 
and the data required. 
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Figure 2: Requirements for executing the multi-criteria evaluations. 

 
 

 
Objective 1: Identify factors and variables that increase the risk of wildfires 
 
Factor 1: Vegetation (Fuel Source) 

Accumulation of organic debris on forest floors can serve as a potential fuel 
for forest fires (Knapp et al., 2005). Since vegetation and debris type vary in the risk 
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of fire vulnerability, we divided vegetation type into 5 classes of fire risk (extreme, 
very high, high, moderate, or low) listed in Table 1 below based on Pan et al., (2016).  

 
Table 1:  Vegetation type and their associated forest fire risk and weight.  

Vegetation Type Risk Weight 

Conifers Extreme 5 

Mixed, broad-leafed, shrubland Very high 4 

Grassland High 3 

Crop land Moderate 2 

All other Low 1 

 
Wetter vegetation is at lower risk than dry vegetation (Chuvieco Salinero, 

2003). To accomplish classifying vegetation wetness, we converted NDVI 
(Normalized Difference Vegetation Index) to Relative Greenness (RG) using the 
equation below from Schneider et al., (2008): 

 
RG =(NDVI - NDVImin) / (NDVImax - NDVImin) 

 
We used 23 16-day NDVI rasters from MODIS satellite imagery from April to 
September 2019. We assessed multiple states of vegetation throughout the 
growing season using three RG images: the week with minimum RG, the week with 
maximum RG, and a calculated raster with average RG across all summer months. 
RG was then ranked divided into 5 classes of fire risk as shown in Table 2 below by 
using natural breaks of the average raster and applied these breaks to the 
minimum and maximum rasters. Since each raster represents different times of 
year, we ran three separate MCEs. 
 
Table 2: Relative Greenness (RG) values based on NDVI rasters from MODIS data, 
and their associated forest fire risk and weight.  
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RG (%) Risk Weight 

<14 Extreme 5 

14 - 42 Very high 4 

42.01 - 62 High 3 

62.01 - 80 Moderate 2 

80.01 - 100 Low 1 

 
Factor 2: Topography 
 For the purpose of our report, topography refers to the slope, aspect, and 
elevation of the landscape. Elevation has an inverse relationship with fire risk as 
higher altitudes pose lower risk and lower altitudes have the highest risk (Eugenio 
et al., 2016). Slope has proved to be a major factor in fire risk, and aspect indicates 
the orientation to the sun, and thus the amount of solar energy received. (Yang and 
Jiang, 2020). Topographical parameters are included in our model by creating a 
Digital Elevation Model (DEM) and weighted according to Table 3 and Table 4 below. 
Slope and Aspect were created from this DEM. 
 
Table 3: Slope values, obtained by calculating percentage rise over run, from the 
Provincial Digital Elevation Model (PDEM) of Ontario, and their associated weight 
and risk of forest fire.  

Slope (%) Risk Weight 

≥ 45.01 Extreme 5 

35.01 - 45 Very high 4 

25.01 - 35 High 3 

15.01 - 25  Moderate 2 

< 15 Low 1 
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Table 4: Aspect derived from the Provincial Digital Elevation Model (PDEM) of 
Ontario and their associated weight and risk of forest fire.  

Aspect Risk Weight 

N Extreme 5 

NW and W Very high 4 

NE High 3 

E Moderate 2 

S, SE, SW, and FLAT Low 1 

 
Factor 3: Temperature 

Temperature range can significantly impact the likelihood of fire and the 
extent of its spread (Rodrigues et al., 2018). Increased temperatures can lead to 
drier, more combustible fuels through increased evaporation and transpiration. 
(Bryant and Westerling, 2014). Large wildfire occurrence typically increases with 
summer drought temperature maximums (Bryant and Westerling, 2014). Weather 
station point data from the MNRF was used to interpolate average temperatures 
across the study area using the Kriging tool in ArcGIS. Assigned weights in Table 5 
below were adapted from Eugenio et al., (2016).  

 
Table 5: Average temperatures and their associated risk of forest fire and weight. 

Average Temperature (°C) Risk Weight 

≥22 Extreme 5 

20.01 - 22 Very high 4 

19.01 - 20 High 3 

18.01 - 19 Moderate 2 

<18 Low 1 
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Factor 4: Hydrology 
 Hydrology includes precipitation and static water sources which are 
considered the lowest risk of fire (MNRF, 2012). Water bodies are considered as a 
criteria, as fires cannot occur on water bodies, therefore creating a raster with only 
water bodies with a weight of 0 and all other areas with a weight of 1. Areas of high 
precipitation and overland flow are shown to have less intense wildfires as 
moisture suppresses the flames (Chuvieco Salinero, 2003). We will classify the 
variations of hydrology according to a Standardized Precipitation Index (SPI) 
provided by the MNRF. The SPI evaluates the precipitation difference as a temporal 
index, providing information on a location’s relative wet or dry conditions 
(Keyantash, 2018). 
 
Table 6: Standard Precipitation Indices (SPI) and their associated risk of forest fire 
and weight.  

SPI Risk Weight 

< -1.5 Extreme 5 

-1.49 to -1.00 Very high 4 

- 0.99 to +0.99 High 3 

1.0 to 1.5 Moderate 2 

> 1.5 Low 1 

 
Factor 5: Human development 
 WUI are areas in which man-made structures are adjacent to vegetation 
posing as a fire risk (Pavegilo and Hardy, 2013). To account for this, population 
density presents a parabola-shaped probability, in that a medium population 
density poses the highest risk of fire initiation (Bryant and Westerling, 2014). We 
used a population vector from NRCan and converted it to a raster with risk of fire 
based on Miller et al., (2011).  
 
Table 7: Population density (people per Km2) and their associated risk of forest fire 
and weight.  
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Population Density Risk Weight 

20 - 60 Extreme 5 

60 - 80 Very high 4 

5 - 20 High 3 

0 - 5 Moderate 2 

80 - 1028 Low 1 

 
Lastly, we will use urban development as a criteria, in that the presence of urban 
areas results in no risk of fire (weight= 0) and non-urban areas results in fire 
possibility (weight= 1). 
 
Objective 2: Design an MCE model based on weighted factors identified above 
 The factors outlined under Objective 1 are conducive to the ignition and 
spread of forest fires in Ontario. These factors can be weighted by their importance 
to these facilitating conditions. An MCE will be performed using these weighted 
values to determine areas of special concern through evaluating alternative factors 
resulting in a spatial suitability score (Carver, 1991).  
 Before data is weighted, it must be standardized. Data in this report will be 
standardized following the linear stretch method using the equations below: 
 
 Benefit factor     Cost factor 

𝑋𝑋′𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖−𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚
       𝑋𝑋′𝑖𝑖𝑖𝑖 = 1 − 𝑥𝑥𝑖𝑖𝑖𝑖−𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚
 

  
In the Heilongjiang Province in China, Yang and Jiang (2020) recently created 

a base reference for the weighted factors. Factors were adjusted due to the 
differences in variables between our studies, such as reducing anthropogenic 
features to 0.15 because of the lack of road data. Comparing the weighted factors 
lead us to creating a pairwise comparison matrix. 
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Table 8: Pairwise Comparison Matrix for Factor Weights of precipitation (precip), 
topography (topo), vegetation condition (veg), temperature (temp), and population 
density (pop). 

 Pairwise Comparison Individual Weights Total 
Weights 

 Precip Topo Veg Temp Pop Precip Topo  Veg Temp Pop  

Precip 1 2 1/2 1 2 1/5 2/10 .5/2.66 1/5 2/8.
5 

0.20 
[0.2046]  

Topo 1/2 1 1/3 1/2 1/2 ½ /5 1/10 ⅓ 2.66 ½ /5 ½ 
/8.5 

0.10 
[0.0968] 

Veg 2 3 1 2 3 2/5 3/10 1/2.66 2/5 3/8.
5 

0.35 
[0.3657] 

Temp 1 2 1/2 1 2 1/5 2/10 ½ /2.66 1/5 2/8.
5 

0.20 
[0.2047] 

Pop 1/2 2 1/3 1/2 1 ½ /5 2/10 ⅓ /2.66 ½ /5 1/8.
5 

0.15 
[0.1286] 

SUM 5 10 2.66 5 8.5 1 1 1 1 1 1 

 
Objective 3: Apply the MCE model to determine the level of wildfire risk 

Through the model created above, after weights of all data are determined, 
the simple additive weighting equation below will be used to perform the MCE. 

 
Suit  =   (CnLakes* CnUrban Areas) * [ (WVegetation* CrVegetation) + ( WTopography* CrTopography) + 
(WTemp* CrTemp) +  (WHydrology* CrHydrology) + (WDevelopment* CrDevelopment) ] 
 

Suit is the final value used to determine risk of forest fire in a given area. Cn are 
constraints given on the suitability of any area, and Cr are criteria, or factors 
outlined under objective 1. W refers to the weighting given to a specific criteria. The 
cumulative results of Objective 1 can be seen in Table 9 below. 

Table 9. Ranking, weights (W), and description of factors, criteria and source of data 
used in the multi-criteria evaluation. (MNRF-Ontario Ministry of Natural Resources 
and NRCan- Natural Resources Canada). 
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Influence 
Factor or 
Criteria 

Data 
Source 

W Variables Internal 
W 

Risk of Fire 
Probability 

Description 
of Fire 
Probability 

Precipitation MNRF 0.20 Standardized 
Precipitation 
Index 

 1 5,4,3,2,1 Extreme, very 
high, high, 
moderate, low  

Topographic 
Factors 

NRCan 0.10 Slope (%) 
Aspect (°) 
Elevation (m) 

0.33 
0.33 
0.34 

1,2,3,4,5 Extreme, very 
high, high, 
moderate, low  

Vegetation 
Condition 

NRCan 
 
MODIS 

0.35 Vegetation type 
Relative 
Greenness (%) 

0.5 
 
0.5 

 1,2,3,4,5 Low, 
moderate, 
high, very 
high, extreme 

Temperature NRCan 0.20 Mean summer 
temperature (°) 

1  1,2,3,4,5 Low, 
moderate, 
high, very 
high, extreme 

Water bodies MNRF C Presence or 
absence of 
water body 

1 1, 0 Criteria 
(Presence = 0, 
absence =1)) 

Human 
Impact 
Features 

MNRF 
 
 
 
MNRF 

0.15 Population 
Density 
 
 
Presence or 
absence of 
urban 
development 

0.5 
 
 
 
0.5 
 
 
 

1,2,3,4,5 
 
 
 
1,0 

Extreme, very 
high, high, 
moderate, low  
 
Criteria (Fire 
possible=1, 
not 
possible=0)  

 
Objective 4: Evaluate the areas of determined high risk 

We expect our MCE to identify final areas of calculated risk to reflect fire risk 
based on the factors we analyzed. We will have three final MCE maps from the 
maximum, minimum, and average RG rasters. This will provide a temporal aspect of 
our analysis to determine when the resulting areas are of the highest risk. 
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Research Findings 
Overall, we found our study area to range from low to extreme fire risk 

based on our factors and criteria. To achieve Objective 4, we will evaluate the fire 
risk based on each of the factors and the final MCE. First, vegetation appeared to be 
mostly high and very high across the study area with extreme and low patches in 
the far north (Figure 3). Northern Ontario seemed to be composed mostly of 
conifers giving it high fire risk, with patches of low risk due to bog-type vegetation. 

 

 
Figure 3. Resulting risk of forest fire based on vegetation types in the study 
area. 

 
RG resulted in a trend as though we expected, the later in the summer, the 

higher the RG and therefore the lower risk of forest fire. As shown in Figure 4 in 
April, the majority of the province has low RG and very high risk of forest fire. This 
temporal analysis adds key implications to not only where in the province is at risk, 
but also when. 
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Figure 4. Resulting risk of forest fire based on Relative Greenness (RG) in the study 
area in April, August, and the average RGs. 
 
 Topographic features across the study area such as elevation and slope 
showed minimal variation. Aspect has extreme variation and the north-eastern 
border of the study area seems to have the highest risk. Since the topography 
weight is the cumulation of all three, the overall risk seems to be quite low. 
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Figure 5. Resulting risk of forest fire based on slope, aspect, and elevation in the study 
area. 

 
The remaining factors can be seen in Figure 10. The presence of water bodies 

leads to variance in temperature based on proximity. The Coastal areas of Hudson 
Bay areas due to higher H2O in the environment and lower temperatures (A). Map B 
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in Figure 10 shows higher precipitation levels present in close vicinity to larger 
water bodies with extreme fire risk in the center area and south arm. Map C shows 
areas of high forest fire risk due to population density in which most of the study 
area is of low risk. Lastly, Figure 10 has maps D and E of the resulting criteria of 
presence of water bodies and urban areas respectively, where fires cannot occur. 
 
Figure 10. The resulting maps of the factors of temperature (A), standard precipitation 
index (B), and human population density (C). In addition, the resulting criteria of water 
bodies (D) and urban areas (E).  

Across our study area, temporally we found the highest risk of forest fire to 
be in April of 2019 with the lowest RG in the growing season (Figure 11). Since RG 
represents the wetness of vegetation, it makes sense that August would have the 
lowest risk of forest fire. The north-west section and south-eastern tip of the study 
area seemed to have the highest risk of fire. This could be due to the medium 
population densities which have the highest risk of fire, and the lowest precipitation 
relative to the rest of the study area. The eastern areas that border Hudson's Bay 
seem to have the least risk. This could be due to the type of vegetation, lower mean 
temperature, high precipitation, and low population density.  
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Figure 11. Resulting Multi-Criteria Evaluation maps of forest fire risk in the study area 
located in Ontario, Canada based on three dates with varying levels of RG. 

 
There are multiple limitations to our analysis such as the resolution and age 

of our data. All data collected is from 2019, with the exception of the population 
density which is from 2012. This could be falsely reflecting the true risk of fire based 
on population density as it has increased since then. There are also factors that 
could influence fire ignition and spread that are not considered such as wind speed. 
Distance to roads was also not accounted for since the factor varies from 0-70 
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meters and our resolution of 250 meters is too large. Future research could 
endeavor to examine data with a finer resolution. 

Conclusion 
Our analysis of forest fire ignition criteria indicate times of growing season 

and areas in Ontario that have a higher risk of forest fire ignition. The resulting MCE 
maps indicate higher risk in April in central Ontario, and higher risk in August in 
Western Ontario. Based on these spatial and temporal risk assessments, 
recommendations can be made to residents and resource managers and prepare 
for times of high risk of fire. 
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